Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate AO356_06290 AO356_06290 1-pyrroline dehydrogenase
Query= BRENDA::P77674 (474 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_06290 Length = 485 Score = 602 bits (1552), Expect = e-177 Identities = 297/470 (63%), Positives = 358/470 (76%) Query: 5 LLINGELVSGEGEKQPVYNPATGDVLLEIAEASAEQVDAAVRAADAAFAEWGQTTPKVRA 64 LLI+GE V+GEG +P+ NPATG+V+ +AEAS EQV+AA+ AA AF W +TTP+ R+ Sbjct: 12 LLIDGEFVAGEGLVEPILNPATGEVVAHVAEASTEQVEAAILAAHRAFDGWSRTTPQQRS 71 Query: 65 ECLLKLADVIEENGQVFAELESRNCGKPLHSAFNDEIPAIVDVFRFFAGAARCLNGLAAG 124 LL +A IE++ A LES NCGKPLH A D++ A VDVFRFFAGA RC G +G Sbjct: 72 NLLLDIASAIEKDADELARLESLNCGKPLHLARQDDLSATVDVFRFFAGAVRCQTGQLSG 131 Query: 125 EYLEGHTSMIRRDPLGVVASIAPWNYPLMMAAWKLAPALAAGNCVVLKPSEITPLTALKL 184 EYL G+TSM+RRDP+GVVASIAPWNYP+MMAAWK+APALAAGN +V KPSE TPL+ L L Sbjct: 132 EYLPGYTSMVRRDPIGVVASIAPWNYPIMMAAWKIAPALAAGNTLVFKPSEHTPLSILAL 191 Query: 185 AELAKDIFPAGVINILFGRGKTVGDPLTGHPKVRMVSLTGSIATGEHIISHTASSIKRTH 244 A I P GVINI+ G G+ VG L HPKVRMVSLTG I TG+ I+ A ++KRTH Sbjct: 192 APALARILPRGVINIICGGGEGVGSHLVSHPKVRMVSLTGDIVTGQKILQAAAKTLKRTH 251 Query: 245 MELGGKAPVIVFDDADIEAVVEGVRTFGYYNAGQDCTAACRIYAQKGIYDTLVEKLGAAV 304 +ELGGKAPVIV +DADI+AVVEGVRT+GYYNAGQDCTAACRIYAQ GI+D LV +LGAAV Sbjct: 252 LELGGKAPVIVCNDADIQAVVEGVRTYGYYNAGQDCTAACRIYAQDGIHDRLVAELGAAV 311 Query: 305 ATLKSGAPDDESTELGPLSSLAHLERVGKAVEEAKATGHIKVITGGEKRKGNGYYYAPTL 364 ++L+ D E+GPL S +RV VE A HI+ ITG G G+YY PTL Sbjct: 312 SSLRFAGKRDADNEIGPLISTRQRDRVASFVERALGQPHIERITGAAVHSGAGFYYQPTL 371 Query: 365 LAGALQDDAIVQKEVFGPVVSVTPFDNEEQVVNWANDSQYGLASSVWTKDVGRAHRVSAR 424 LAG Q D IVQ+EVFGPVV+VT FD Q V+WANDS+YGLASSVWT+++ +A +V+AR Sbjct: 372 LAGCKQSDEIVQREVFGPVVTVTRFDELSQAVDWANDSEYGLASSVWTQNLDKAMQVAAR 431 Query: 425 LQYGCTWVNTHFMLVSEMPHGGQKLSGYGKDMSLYGLEDYTVVRHVMVKH 474 LQYGCTW+N+HFMLVSEMPHGG K SGYGKD+S L+DY+VVRH+M +H Sbjct: 432 LQYGCTWINSHFMLVSEMPHGGLKRSGYGKDLSSDSLQDYSVVRHIMARH 481 Lambda K H 0.317 0.134 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 681 Number of extensions: 21 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 474 Length of database: 485 Length adjustment: 34 Effective length of query: 440 Effective length of database: 451 Effective search space: 198440 Effective search space used: 198440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory