Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate AO356_18740 AO356_18740 succinylglutamate-semialdehyde dehydrogenase
Query= BRENDA::P76217 (492 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_18740 Length = 488 Score = 598 bits (1543), Expect = e-175 Identities = 300/486 (61%), Positives = 369/486 (75%) Query: 2 TLWINGDWITGQGASRVKRNPVSGEVLWQGNDADAAQVEQACRAARAAFPRWARLSFAER 61 +L+I G W+ GQG NPV+ +VLW GN A AAQVE A +AAR AFP WAR S ER Sbjct: 3 SLYIAGSWLEGQGDLFESLNPVTQQVLWSGNGATAAQVESAVQAARQAFPDWARRSLDER 62 Query: 62 HAVVERFAALLESNKAELTAIIARETGKPRWEAATEVTAMINKIAISIKAYHVRTGEQRS 121 V+E FAA L+S+ EL I ETGKP WEAATEVT+M+NK+AIS+++Y RTGE+ Sbjct: 63 IQVLEAFAAALKSHADELAQCIGEETGKPLWEAATEVTSMVNKVAISVQSYRERTGEKSG 122 Query: 122 EMPDGAASLRHRPHGVLAVFGPYNFPGHLPNGHIVPALLAGNTIIFKPSELTPWSGEAVM 181 + D A LRH+PHGV+AVFGPYNFPGHLPNGHIVPALLAGN+++FKPSELTP E + Sbjct: 123 PLGDATAVLRHKPHGVVAVFGPYNFPGHLPNGHIVPALLAGNSVLFKPSELTPKVAELTV 182 Query: 182 RLWQQAGLPPGVLNLVQGGRETGQALSALEDLDGLLFTGSANTGYQLHRQLSGQPEKILA 241 + W +AGLP GVLNL+QG RETG AL+A +DGL FTGS+ TG LH+Q SG+P+KILA Sbjct: 183 KCWVEAGLPAGVLNLLQGARETGIALAANPGIDGLFFTGSSRTGNLLHQQFSGRPDKILA 242 Query: 242 LEMGGNNPLIIDEVADIDAAVHLTIQSAFVTAGQRCTCARRLLLKSGAQGDAFLARLVAV 301 LEMGGNNPL++DEVAD+DAAV+ IQSAF++AGQRCTCARRLL+ GA GDA LARLVAV Sbjct: 243 LEMGGNNPLVVDEVADVDAAVYTIIQSAFISAGQRCTCARRLLVPEGAWGDALLARLVAV 302 Query: 302 SQRLTPGNWDDEPQPFIGGLISEQAAQQVVTAWQQLEAMGGRPLLAPRLLQAGTSLLTPG 361 S L G +D +P PF+G +IS AA+ ++ A L G PLLA Q +LLTPG Sbjct: 303 SSTLEVGAFDQQPAPFMGSVISLGAAKALMDAQNHLLGKGAVPLLAMTQPQPQAALLTPG 362 Query: 362 IIEMTGVAGVPDEEVFGPLLRVWRYDTFDEAIRMANNTRFGLSCGLVSPEREKFDQLLLE 421 I+++T VA PDEE+FGPLL+V RY F AI ANNT++GL+ GL+S + ++ Q L+ Sbjct: 363 ILDVTAVAERPDEELFGPLLQVIRYTDFAAAITEANNTQYGLAAGLLSDSQARYQQFWLQ 422 Query: 422 ARAGIVNWNKPLTGAASTAPFGGIGASGNHRPSAWYAADYCAWPMASLESDSLTLPATLN 481 +RAGIVNWNK LTGAAS+APFGG+GASGNHR SA+YAADYCA+P+ASLE+ SL +PA L Sbjct: 423 SRAGIVNWNKQLTGAASSAPFGGVGASGNHRASAYYAADYCAYPVASLETPSLVMPAALT 482 Query: 482 PGLDFS 487 PG+ S Sbjct: 483 PGVRMS 488 Lambda K H 0.318 0.134 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 778 Number of extensions: 32 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 488 Length adjustment: 34 Effective length of query: 458 Effective length of database: 454 Effective search space: 207932 Effective search space used: 207932 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory