GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fruI in Pseudomonas fluorescens FW300-N2C3

Align Phosphoenolpyruvate--protein phosphotransferase (EC 2.7.3.9) (characterized)
to candidate AO356_07335 AO356_07335 PTS fructose transporter subunit IIA

Query= reanno::pseudo5_N2C3_1:AO356_07335
         (954 letters)



>FitnessBrowser__pseudo5_N2C3_1:AO356_07335
          Length = 954

 Score = 1828 bits (4735), Expect = 0.0
 Identities = 954/954 (100%), Positives = 954/954 (100%)

Query: 1   MLELTLEQISMAQTAVDKDAALQLLADKLVADGLVAEGYLAGLQAREAQGSTFLGQGIAI 60
           MLELTLEQISMAQTAVDKDAALQLLADKLVADGLVAEGYLAGLQAREAQGSTFLGQGIAI
Sbjct: 1   MLELTLEQISMAQTAVDKDAALQLLADKLVADGLVAEGYLAGLQAREAQGSTFLGQGIAI 60

Query: 61  PHGTPQTRDLVYSTGVRLLQFPEGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET 120
           PHGTPQTRDLVYSTGVRLLQFPEGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET
Sbjct: 61  PHGTPQTRDLVYSTGVRLLQFPEGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET 120

Query: 121 DLGQALRRAGSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180
           DLGQALRRAGSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS
Sbjct: 121 DLGQALRRAGSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180

Query: 181 NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE 240
           NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE
Sbjct: 181 NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE 240

Query: 241 AHQALLERLCALLIEGRGHELGRATSSRKVLEVLGGELPADWPSARIGLANAHGLHARPA 300
           AHQALLERLCALLIEGRGHELGRATSSRKVLEVLGGELPADWPSARIGLANAHGLHARPA
Sbjct: 241 AHQALLERLCALLIEGRGHELGRATSSRKVLEVLGGELPADWPSARIGLANAHGLHARPA 300

Query: 301 KILAQLAKSFDGEIRVRIVDGQDSAVSAKSLSKLLSLGARRGQVLEFIAEPSIANDALPA 360
           KILAQLAKSFDGEIRVRIVDGQDSAVSAKSLSKLLSLGARRGQVLEFIAEPSIANDALPA
Sbjct: 301 KILAQLAKSFDGEIRVRIVDGQDSAVSAKSLSKLLSLGARRGQVLEFIAEPSIANDALPA 360

Query: 361 LLAAIEEGLGEEVEPLPPPSAPRETVMAEVATVMLAPESGSLIQAVAAAPGIAIGPAHIQ 420
           LLAAIEEGLGEEVEPLPPPSAPRETVMAEVATVMLAPESGSLIQAVAAAPGIAIGPAHIQ
Sbjct: 361 LLAAIEEGLGEEVEPLPPPSAPRETVMAEVATVMLAPESGSLIQAVAAAPGIAIGPAHIQ 420

Query: 421 VLQAIDYPLRGESAAIERERLQNALNQVRSDIQGLIERAKAKAIREIFITHQEMLDDPEL 480
           VLQAIDYPLRGESAAIERERLQNALNQVRSDIQGLIERAKAKAIREIFITHQEMLDDPEL
Sbjct: 421 VLQAIDYPLRGESAAIERERLQNALNQVRSDIQGLIERAKAKAIREIFITHQEMLDDPEL 480

Query: 481 TDEVDTRLKLGESAQAAWMGVIEAAAKEQEALQDALLAERAADLRDVGRRVLAQLCGVET 540
           TDEVDTRLKLGESAQAAWMGVIEAAAKEQEALQDALLAERAADLRDVGRRVLAQLCGVET
Sbjct: 481 TDEVDTRLKLGESAQAAWMGVIEAAAKEQEALQDALLAERAADLRDVGRRVLAQLCGVET 540

Query: 541 PNEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAA 600
           PNEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAA
Sbjct: 541 PNEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAA 600

Query: 601 VLLLAPGTSLLLDGQRGRLHVDPDAATLQRAKEERDTREQRLKVAAEQRHEPALTRDGHA 660
           VLLLAPGTSLLLDGQRGRLHVDPDAATLQRAKEERDTREQRLKVAAEQRHEPALTRDGHA
Sbjct: 601 VLLLAPGTSLLLDGQRGRLHVDPDAATLQRAKEERDTREQRLKVAAEQRHEPALTRDGHA 660

Query: 661 VEVFANIGESAGVASAVEQGAEGIGLLRTELIFMAHSQAPDEATQEAEYRKVLDGLAGRP 720
           VEVFANIGESAGVASAVEQGAEGIGLLRTELIFMAHSQAPDEATQEAEYRKVLDGLAGRP
Sbjct: 661 VEVFANIGESAGVASAVEQGAEGIGLLRTELIFMAHSQAPDEATQEAEYRKVLDGLAGRP 720

Query: 721 LVVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRSADSRPLRI 780
           LVVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRSADSRPLRI
Sbjct: 721 LVVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRSADSRPLRI 780

Query: 781 MFPMVGSVDEWRQARAMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTN 840
           MFPMVGSVDEWRQARAMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTN
Sbjct: 781 MFPMVGSVDEWRQARAMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTN 840

Query: 841 DLTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPV 900
           DLTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPV
Sbjct: 841 DLTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPV 900

Query: 901 LVGLGVDELSVSARSIAEVKARVRELSLAQVQTLAQAALAVGSADDVRALVEAL 954
           LVGLGVDELSVSARSIAEVKARVRELSLAQVQTLAQAALAVGSADDVRALVEAL
Sbjct: 901 LVGLGVDELSVSARSIAEVKARVRELSLAQVQTLAQAALAVGSADDVRALVEAL 954


Lambda     K      H
   0.318    0.135    0.381 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2361
Number of extensions: 74
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 954
Length of database: 954
Length adjustment: 44
Effective length of query: 910
Effective length of database: 910
Effective search space:   828100
Effective search space used:   828100
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory