Align The fructose porter, FruA (fructose-1-P forming IIABC) (Delobbe et al. 1975) FruA is 39% identical to 4.A.2.1.1). fructose can be metabolized to Fru-1-P via this system as well as Fru-6-P by another PTS system (characterized)
to candidate AO356_07325 AO356_07325 PTS fructose transporter subunit IIBC
Query= TCDB::P71012 (635 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_07325 AO356_07325 PTS fructose transporter subunit IIBC Length = 580 Score = 430 bits (1106), Expect = e-125 Identities = 220/481 (45%), Positives = 326/481 (67%), Gaps = 24/481 (4%) Query: 158 EEEEAAPAPAGKG----KILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGI 213 E + +A PA +++A+TACPTG+AHTFMAA+AL++ A +LG +++VET GS G Sbjct: 105 EADASAQVPAASAERAPRLVAITACPTGVAHTFMAAEALQQAATKLGYDLQVETQGSVGA 164 Query: 214 KHKLTAQEIEDAPAIIVAADKQVEMERFKGKRVLQVPVTAGIRRPQELIEKAMNQDAPIY 273 ++ L+A+ I +A +++A D +V ERF GK++ + +++ + + KA+ + Sbjct: 165 RNPLSAEAIAEADVVLLATDIEVATERFAGKKIYRCGTGIALKQAEATLNKALVEARQES 224 Query: 274 QGSGGGSAASNDDEEAKGKSGSGIGNTFYKHLMSGVSNMLPFVVGGGILVAISFFWGIHS 333 SG + A ++ K+G+ YKHL++GVS MLP VV GG+++A+SF +GI + Sbjct: 225 ASSGASAPAKSE------KTGA------YKHLLTGVSFMLPMVVAGGLMIALSFVFGIEA 272 Query: 334 ADPNDPSYNTFAAALNFIGGDNALKLIVAVLAGFIAMSIADRPGFAPGMVGGFMATQANA 393 +P T AAAL IGG+ A KL+V +LAG+IA SIADRPG APGM+GG +A+ A Sbjct: 273 F--KEPG--TLAAALMQIGGETAFKLMVPLLAGYIAYSIADRPGLAPGMIGGMLASTLGA 328 Query: 394 GFLGGLIAGFLAGYVVILLKKVFTFIPQSLDGLKPVLIYPLFGIFITGVLMQFVVNTPVA 453 GF+GG+IAGFLAGY + + + +PQSL+ LKP+LI PL TG++M ++V PVA Sbjct: 329 GFIGGIIAGFLAGYAAKAISR-YARLPQSLEALKPILIIPLLASLFTGLVMIYIVGKPVA 387 Query: 454 AFMNFLTNWLESLGTGNLVLMGIILGGMMAIDMGGPLNKAAFTFGIAMIDAGNYAPHAAI 513 + LT++L+S+GT N +L+G++LG MM +D+GGP+NKAA+ F + ++ + +YAP AA Sbjct: 388 GMLEALTHFLDSMGTTNAILLGVLLGAMMCVDLGGPINKAAYAFSVGLLASQSYAPMAAA 447 Query: 514 MAGGMVPPLGIALATTIFRNKFTQRDREAGITCYFMGAAFVTEGAIPFAAADPLRVIPAA 573 MA GMVPP+G+ +AT I R KF Q +REAG +G F++EGAIPFAA DPLRVIPA+ Sbjct: 448 MAAGMVPPIGLGIATFIARRKFAQTEREAGKAALVLGLCFISEGAIPFAAKDPLRVIPAS 507 Query: 574 VVGAAVAGGLTEFFRVTLPAPHGGVFVAFI---TNHPMLYLLSIVIGAVVMAIILGIVKK 630 + G A+ G L+ +F L APHGG+FV I NH +LYLL+IV G+++ A+ ++K+ Sbjct: 508 IAGGALTGALSMYFGCKLMAPHGGLFVMLIPNAINHALLYLLAIVAGSLLTAVAYALLKR 567 Query: 631 P 631 P Sbjct: 568 P 568 Score = 48.1 bits (113), Expect = 1e-09 Identities = 25/78 (32%), Positives = 43/78 (55%) Query: 171 KILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQEIEDAPAIIV 230 K+ VTACP G+ + + A L A+ G VE + ++ + +L+A +E A +++ Sbjct: 2 KLAIVTACPNGMVTSVLCARLLDAAAQRQGWSTSVEVHDAAHPERQLSAATLEAAEWVLL 61 Query: 231 AADKQVEMERFKGKRVLQ 248 A V++ RF GKRV + Sbjct: 62 VASGPVDLSRFVGKRVFR 79 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 765 Number of extensions: 33 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 635 Length of database: 580 Length adjustment: 37 Effective length of query: 598 Effective length of database: 543 Effective search space: 324714 Effective search space used: 324714 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory