Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate AO356_20250 AO356_20250 L-arabinose transporter ATP-binding protein
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_20250 Length = 514 Score = 360 bits (925), Expect = e-104 Identities = 201/496 (40%), Positives = 309/496 (62%), Gaps = 7/496 (1%) Query: 23 IALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILLD 82 + + K FPGV AL N F G+VHALMGENGAGKSTL+KIL G Y SGD+ + Sbjct: 16 LRFNGIGKSFPGVQALANISFVAHPGQVHALMGENGAGKSTLLKILGGAYIPSSGDLQIG 75 Query: 83 GKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELNRQAA 142 + + + A G+ +IHQEL+L+ ++ A+N+F+G P + GL ++ L +QA Sbjct: 76 EQTMAFKGTADSIASGVAVIHQELHLVPEMTVAENLFLGHLPAR-FGL-VNRGVLRQQAL 133 Query: 143 AIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELFRI 202 + + ++DP VG L++ ++Q+VEIAKALS + V+ DEPT++L+ EI L I Sbjct: 134 TLLKGLADEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAI 193 Query: 203 IRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVP-MQETSMDTIISMMVGRAL 261 I L+ +G ++Y+SH+M+E+ +I + V+V +DG+Y+ T M E + D +++ MVGR + Sbjct: 194 IARLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRYVRTFENMSELTHDQLVTCMVGRDI 253 Query: 262 DGEQRIPPDTSRNDVVLEVRGLNRGRAIRD-VSFTLRKGEILGFAGLMGAGRTEVARAIF 320 P R DV L+V+ L G +R+ VSF + KGEILG GL+GAGRTE+ R + Sbjct: 254 QDIYDYRP-RERGDVALQVKSL-LGPGLREPVSFQVHKGEILGLFGLVGAGRTELFRLLS 311 Query: 321 GADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSSMGRF 380 G + G +++HG + ++SP DA+A G+ EDRK G+ V NI +S+ Sbjct: 312 GLERQSEGSLVLHGKELKLRSPRDAIAAGVLLCPEDRKKEGIIPLGSVGENINISARPAH 371 Query: 381 TRVGFMDQRAI-REAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDILFF 439 + +G + + R A ++ L +KTP+ Q+ LSGGNQQK ++ +WL +L Sbjct: 372 SALGCLLRGDWERGNADKQIKSLKVKTPAASQKIMYLSGGNQQKAILGRWLSMPMKVLLL 431 Query: 440 DEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRITGELAR 499 DEPTRGID+GAK+EIY+++ LA G A++++SS+L EV+ +S R+LV+CEG + GEL+R Sbjct: 432 DEPTRGIDIGAKAEIYQIIHNLAADGIAVIVVSSDLMEVMGISDRILVLCEGAMRGELSR 491 Query: 500 ADATQEKIMQLATQRE 515 A + ++QLA R+ Sbjct: 492 DQANESNLLQLALPRQ 507 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 627 Number of extensions: 28 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 514 Length adjustment: 35 Effective length of query: 485 Effective length of database: 479 Effective search space: 232315 Effective search space used: 232315 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory