Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:B2SYR5 (512 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 349 bits (895), Expect = e-100 Identities = 208/508 (40%), Positives = 321/508 (63%), Gaps = 27/508 (5%) Query: 5 LRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDS--GRVM 62 L+ + I K F GV+AL+G+ V G+ GL GENGAGKSTL+K+L Y + G ++ Sbjct: 6 LQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEII 65 Query: 63 IDGNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQ---LP----NSLGWVNKR 115 DG ++ S + + AAGI +IHQEL VPDL+VAEN+ +G LP N +++ Sbjct: 66 WDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIHRA 125 Query: 116 EAKRFVRE-RLEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHR 174 EA +RE ++ M V+L + + +Q+VEI KAL + AR++ LDEP+S+L+ Sbjct: 126 EA--LMRELKVPDMNVSLP----VSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRS 179 Query: 175 ETEVLFKLVRDLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIV 234 E EVL ++RDL+A A +YISH++DE+ +CD ++ RDG+ IA+ + + I+ Sbjct: 180 EIEVLLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIAT-TAMTDMDIPKII 238 Query: 235 SEMVGREISDIYNYSARPLGEVRFAAKGIEGHALAQPA-------SFEVRRGEIVGFFGL 287 ++MVGRE+S++Y +GEV F A+ + + + P SF ++RGEI+G GL Sbjct: 239 TQMVGREMSNLYPTEPHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAGL 298 Query: 288 VGAGRSELMHLVYGA-DHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMA 346 VGAGR+EL+ ++GA + GE+ L+G+ I R+ ++IR G+ + PEDRK +GI+ Sbjct: 299 VGAGRTELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPDL 358 Query: 347 TVSENINISCRRHYLRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAI 406 V +NI ++ +Y ++ +D + E + D+ I + +KT S I LSGGNQQKA+ Sbjct: 359 GVGQNITLAVLDNYSKLTR-IDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAV 417 Query: 407 LSRWLAEPDLKVVILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDR 466 L++ L +V+ILDEPTRG+DVGAK+EIY ++ LA G +I+M+SSEL EVLGVSDR Sbjct: 418 LAKMLLTKP-RVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDR 476 Query: 467 IVVMRQGRISGELTRKDATEQSVLSLAL 494 ++V+ G++ G+ + T++ VL+ AL Sbjct: 477 VLVIGDGQLRGDFINHELTQEQVLAAAL 504 Lambda K H 0.320 0.136 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 665 Number of extensions: 36 Number of successful extensions: 12 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 518 Length adjustment: 35 Effective length of query: 477 Effective length of database: 483 Effective search space: 230391 Effective search space used: 230391 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory