Align Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized)
to candidate AO356_00965 AO356_00965 sugar ABC transporter ATP-binding protein
Query= TCDB::P0AAG8 (506 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_00965 Length = 517 Score = 338 bits (867), Expect = 3e-97 Identities = 185/493 (37%), Positives = 299/493 (60%), Gaps = 7/493 (1%) Query: 13 LLEMSGINKSFPGVKALDNVNLKVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGTILF 72 +L +SGI K++ L ++NL + + AL GENGAGKSTL K + G+ +G + F Sbjct: 9 VLCVSGIGKTY-AQPVLTDINLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQF 67 Query: 73 QGKEIDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYRETKA 132 QG++ S +A E G+ MV QELNL+ SV +N++L P+ G ++ + ++ + Sbjct: 68 QGQDYRPGSRTQAEELGVRMVMQELNLLPTLSVAENLFLDNLPSHGGWISRKQLRKAAIE 127 Query: 133 IFDELDID-IDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTI 191 ++ +D IDP VG L + QM+EIA+ + ++I+DEPT+ LT +EV LF Sbjct: 128 AMAQVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREVEMLFEQ 187 Query: 192 IRKLKERGCGIVYISHKMEEIFQLCDEVTVLRDGQWIATEPLAGLTMDKIIAMMVGRSLN 251 I +L+ RG I+YISH++EE+ ++ + VLRDG + EP+A ++++ +MVGR L Sbjct: 188 ITRLQARGVAIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYDSEQLVTLMVGRELG 247 Query: 252 QRFPDKENKPGEVILEVRNLTSLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLFG 311 + + G L V+ LT R +RDVSF++ GEI GI+GL+GA RT+++ +FG Sbjct: 248 EHIDLGPRQIGAPALTVKGLT--RSDKVRDVSFEVRSGEIFGISGLIGAGRTELLRLIFG 305 Query: 312 IREKSAGTITLHG--KQINNHNANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRN 369 +GT+ L + ++ + ++A+ HG AL+TE+R+ G+ I N + N+ Sbjct: 306 ADPADSGTVALGSPARVVSIRSPSDAVAHGIALITEDRKGEGLLLTQSIAANIALGNMPE 365 Query: 370 YKNKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPEILM 429 + GL++ S + Q +D+MR+++ + LSGGNQQKV+IGRWL +++ Sbjct: 366 ISS-AGLVNGSAELALAQRQVDAMRIRSSSPTQLVSELSGGNQQKVVIGRWLERDCAVML 424 Query: 430 LDEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIVD 489 DEPTRGIDVGAKF+IY L+ EL ++GK ++++SS++ EL+ I DRI V+S G + + Sbjct: 425 FDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLIDTFE 484 Query: 490 TKTTTQNEILRLA 502 + TQ+++L A Sbjct: 485 RDSWTQDDLLAAA 497 Lambda K H 0.318 0.136 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 577 Number of extensions: 25 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 517 Length adjustment: 35 Effective length of query: 471 Effective length of database: 482 Effective search space: 227022 Effective search space used: 227022 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory