Align Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= SwissProt::P23924 (506 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 367 bits (943), Expect = e-106 Identities = 208/505 (41%), Positives = 313/505 (61%), Gaps = 11/505 (2%) Query: 11 EYLLEMRGINKSFPGVKALDNVNLNVRPHSIHALMGENGAGKSTLLKCLFGIYQKDS--G 68 +YLL+M GI K+F GVKAL+ +++ VRP L GENGAGKSTL+K L +Y + G Sbjct: 3 DYLLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEG 62 Query: 69 SIVFQGKEVDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPT-KGMFVDQDKMY 127 I++ G+ + S E GI ++HQEL LV SV +N+++G T G ++ M Sbjct: 63 EIIWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMI 122 Query: 128 QDTKAIFDELDI-DIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVN 186 +A+ EL + D++ V Q++EIAKA + A+++I+DEP+S+LT E+ Sbjct: 123 HRAEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSEIE 182 Query: 187 HLFTIIRKLKERGCGIVYISHKMEEIFQLCDEITILRDGQWIATQPLEGLDMDKIIAMMV 246 L IIR LK +G VYISHK++E+ +CD I+++RDG+ IAT + +D+ KII MV Sbjct: 183 VLLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQMV 242 Query: 247 GRSLNQRFPDKENKPGDVILEVRHLT-----SLRQPSIRDVSFDLHKGEILGIAGLVGAK 301 GR ++ +P + + G+VI E RH+T + R+ + D+SF L +GEILGIAGLVGA Sbjct: 243 GREMSNLYPTEPHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAGLVGAG 302 Query: 302 RTDIVETLFGIRE-KSSGTITLHGKKINNHTANEAINHGFALVTEERRSTGIYAYLDIGF 360 RT++V LFG + G + L+G++I+ T ++I G +V E+R+ GI L +G Sbjct: 303 RTELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPDLGVGQ 362 Query: 361 NSLISNIRNYKNKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRW 420 N ++ + NY +K+ +D I M +KT I SLSGGNQQK ++ + Sbjct: 363 NITLAVLDNY-SKLTRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAVLAKM 421 Query: 421 LLTQPEILMLDEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMS 480 LLT+P +L+LDEPTRG+DVGAK+EIY+L+ LA +G II++SSE+ E+LG++DR+LV+ Sbjct: 422 LLTKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDRVLVIG 481 Query: 481 NGLVSGIVDTKTTTQNEILRLASLH 505 +G + G TQ ++L A H Sbjct: 482 DGQLRGDFINHELTQEQVLAAALSH 506 Lambda K H 0.319 0.137 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 633 Number of extensions: 28 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 518 Length adjustment: 35 Effective length of query: 471 Effective length of database: 483 Effective search space: 227493 Effective search space used: 227493 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory