Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate AO356_13790 AO356_13790 choline dehydrogenase
Query= metacyc::MONOMER-15202 (579 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_13790 AO356_13790 choline dehydrogenase Length = 567 Score = 338 bits (868), Expect = 3e-97 Identities = 214/545 (39%), Positives = 298/545 (54%), Gaps = 27/545 (4%) Query: 36 FDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNY--HWIHIPVGYLYCINNPRTDW 93 FDYI++GAG+AG LA RL+ D VLL+EAGG D +P + + R +W Sbjct: 5 FDYIIIGAGSAGNTLATRLTEDEGITVLLLEAGGPDYRLDFRTQMPAALAFPLQGRRYNW 64 Query: 94 RFRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDAWRWDNCL 153 + T+P+P +NGR + RGK LGG S INGM Y+RG A DYD WA+L G + W + +CL Sbjct: 65 AYETDPEPHMNGRRMECGRGKGLGGSSLINGMCYIRGNALDYDNWAKLPGLEDWTYLDCL 124 Query: 154 PDFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKW---QVLADFATAAVEAGVP 210 P ++R E D P+ Y HGG+ + K + A V+AG P Sbjct: 125 P-------YFRKAETRDIGPNDY----HGGDGPVSVTTPKAGNNPLFHAMVEAGVQAGYP 173 Query: 211 RTRDFNRGDNEGVDAFE-VNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQVLKLDFASGE 269 RT D N EG + +G R + ++ +L ++R LT+ K+ F E Sbjct: 174 RTEDLNGYQQEGFGPMDRTVTPNGRRASTARGYLDVAKKRSTLTIVTHALTDKIIF---E 230 Query: 270 GSEPRCCGVTVERAGKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPVVAD 329 G V A ++V AR EV+L +GAI SPQ+LQ SG+GP LL IPVV D Sbjct: 231 GKRAVGVRYLVGAAEERVEARARKEVLLCSGAIASPQILQRSGVGPAQLLESLDIPVVHD 290 Query: 330 LPGVGENLQDHLQIRSIYKVKGAKTLNTMANSLI--GKAKIGLEYILKRSGPMSMAPSQL 387 LPGVGENLQDHL++ Y +L SL+ + IG E++ +G + + Sbjct: 291 LPGVGENLQDHLELYLQYACTQPVSLYP---SLLWYNQPAIGAEWLFNGTGIGASNQFEA 347 Query: 388 CIFTRSSKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGNPR 447 F R+ +++ PN++YH P+++ G A + ++ SRG ++ KS +PR Sbjct: 348 GGFIRTRPDFDWPNIQYHFLPVAINYNGSNGVKEHGFQAHMGSMRSPSRGRIQAKSKDPR 407 Query: 448 QAPAISPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARLAG 507 Q P+I NY++TE+D Q D +R+TR I QPA + E PG++ Q+D L + Sbjct: 408 QHPSILFNYMATEQDWQEFRDGIRLTREIMQQPALDPFRGREISPGIEVQTDAQLDQFIR 467 Query: 508 DIGTTIFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTLMI 567 + T FHP + KMG DD MAVVD RV G+ GLRVVDASIMP IT+GN N+PT+MI Sbjct: 468 EHAETAFHPSCSCKMGTDD--MAVVDGEGRVHGMQGLRVVDASIMPIITTGNLNAPTIMI 525 Query: 568 AEKAA 572 AEK A Sbjct: 526 AEKIA 530 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 996 Number of extensions: 53 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 567 Length adjustment: 36 Effective length of query: 543 Effective length of database: 531 Effective search space: 288333 Effective search space used: 288333 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory