Align Probable lysine/arginine permease CAN2; Basic amino acids permease CAN2 (characterized)
to candidate AO356_18530 AO356_18530 aromatic amino acid transporter
Query= SwissProt::Q59WU0 (568 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_18530 Length = 471 Score = 230 bits (587), Expect = 8e-65 Identities = 148/477 (31%), Positives = 240/477 (50%), Gaps = 44/477 (9%) Query: 50 QYSTCDEVKRDLKARHVSMIAIGGTIGTGLFISTGSLLHTTGPVMSLISFLFVTTLAYSV 109 Q S E+KR LK RH+ +IA+GG IGTGLF+ + +L + GP M ++ + +A+ + Sbjct: 4 QNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSM-ILGYAICGFIAFMI 62 Query: 110 TQSLGEMTTYIPVSGSFAQFITRWVSKSCGAANGWLYWFSWAITFALELSVVGQVIQYWT 169 + LGEM PV+GSF+ F ++ G +GW W + + EL+ VG+ I YW Sbjct: 63 MRQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHYWA 122 Query: 170 DAVPLAGWISI--FFVLLTTFNLFPVKYYGEVEFWIASTKVIAIVGWL-IYAFCMVCGAG 226 +P W+S FF+L+ NL VK +GE EFW A KV+AIVG + + ++ +V G G Sbjct: 123 PDIPT--WVSAAAFFILINAINLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSGHG 180 Query: 227 KTGPVGFRYWRNGYAWGDGMIVSNNGKYAISFINGLINA----VFTFQGTELVAVTAGEA 282 W +G + +G ++GL+ A +F+F G E++ TA EA Sbjct: 181 GPQASVTNLWSHGGFFPNG-------------VSGLVMAMAIIMFSFGGLEMLGFTAAEA 227 Query: 283 S--PRAIRSAIKKVMFRILVFYVLCMLFIGLLVPYND--PKLTQDGGFTRNSPFLIAMEN 338 I AI +V++RIL+FY+ ++ + L P++ L G SPF+ Sbjct: 228 DKPKTVIPKAINQVIYRILIFYIGALVVLLSLTPWDSLLATLNASGDAYSGSPFVQVFSM 287 Query: 339 SGTKVLPHIFNAVIVTTIISAGNSNVYSGSRILYGLAQAGVAPKFFLKTNKGGVPYFAVL 398 G+ HI N V++T +S NS Y SR+L G+A+ G APK + +K GVP ++L Sbjct: 288 LGSNTAAHILNFVVLTAALSVYNSGTYCNSRMLLGMAEQGDAPKALSRIDKRGVPVRSIL 347 Query: 399 FTAAFGALGYLACSEDGNKAFTWLLNIIATAGLIAWGFISVSHVRFMNVLRKRGLSRDIL 458 +AA + L A L++++ +I W IS SH +F + + ++ Sbjct: 348 ASAAVTLVAVLLNYLVPQHALELLMSLVVATLVINWAMISYSHFKFRQHMNQ---TQQTP 404 Query: 459 PYKAFFMPYSAY----YAIIIIFIVVLIQGFTVFWDFNASDFFTAYISVILFVVLWI 511 +KA + PY Y + + I+ +++LI G + + Y + V +W+ Sbjct: 405 LFKALWYPYGNYICLAFVVFILGVMLLIPGIQI----------SVYAIPVWVVFMWV 451 Lambda K H 0.326 0.141 0.448 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 568 Length of database: 471 Length adjustment: 35 Effective length of query: 533 Effective length of database: 436 Effective search space: 232388 Effective search space used: 232388 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory