Align MtlE, component of The polyol (mannitol, glucitol (sorbitol), arabitol (arabinitol; lyxitol)) uptake porter, MtlEFGK (characterized)
to candidate AO356_00025 AO356_00025 sugar ABC transporter substrate-binding protein
Query= TCDB::O30491 (436 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_00025 AO356_00025 sugar ABC transporter substrate-binding protein Length = 436 Score = 679 bits (1751), Expect = 0.0 Identities = 326/436 (74%), Positives = 368/436 (84%), Gaps = 1/436 (0%) Query: 1 MKFTAKALLACTCMTLSAVSLGAQTLTIATVNNSDMIRMQKLSKTFEAEHPEIKLNWVVL 60 MK T AL+ T ++ + S A+TLTIATVNN DMIRMQ+LSK FE +HP+IKLNWVVL Sbjct: 1 MKIT-NALILSTGLSFALASHAAETLTIATVNNGDMIRMQRLSKVFEQQHPDIKLNWVVL 59 Query: 61 EENVLRQRLTTDIATQGGQFDVLTIGMYEAALWGAKGWLEPMKDLPASYDLDDVFPSVRD 120 EENVLRQRLTTDIATQGGQFDVLTIG YE +WGAK WLEPMKDLPA YD+DD+FP+VR Sbjct: 60 EENVLRQRLTTDIATQGGQFDVLTIGTYETPMWGAKNWLEPMKDLPAGYDVDDIFPAVRQ 119 Query: 121 GLSVKGSLYALPFYAESSITYYRTDLFKDAGLSMPEHPTWSQIGEFAAKLTDKSKEQYGL 180 GLSV +LYALPFY ES+ITYYRTDLFK AGL+MP PTWSQ+GEFAAKL D SK+QYG+ Sbjct: 120 GLSVNDTLYALPFYGESTITYYRTDLFKAAGLTMPGQPTWSQLGEFAAKLNDPSKDQYGM 179 Query: 181 CLRGKAGWGENMALITTLANGYGARWFDEKWQPEFNGPEWKDALNFYVDNMKKSGPPGAS 240 CLRGKAGWGENMAL+TT+AN +GARWFDEKWQPE NGPEWK A FYVD +KK GPPG S Sbjct: 180 CLRGKAGWGENMALLTTMANAFGARWFDEKWQPELNGPEWKAAATFYVDTLKKYGPPGVS 239 Query: 241 SNGFNENLALFNSGKCAIWVDASVAGSFVTDKTQSKVADHVGFTFAPHEKTDKGTSWLYS 300 SNGFNE LALFNSGKCAIWVDASVAGSF TDK QS+V D VGF AP E TDKG+SWLY+ Sbjct: 240 SNGFNETLALFNSGKCAIWVDASVAGSFTTDKEQSRVVDSVGFAPAPIEVTDKGSSWLYA 299 Query: 301 WSLAIPTSSKAKDAAKVFTSWATSKEYGALVAKTDGVANVPPGTRKSTYSDEYMKAAPFA 360 WSLAIP +SK K+AAK F +WATSKEY LV DG+ NVPPGTR STYSD Y+KAAPFA Sbjct: 300 WSLAIPATSKHKEAAKSFVTWATSKEYIQLVTDKDGITNVPPGTRISTYSDAYLKAAPFA 359 Query: 361 KVTLESLKVADPTKPTLKPVPYIGIQLVTIPEFQAIGTQVGKFFSGALTGQQTVDAALTA 420 +VTL+ +K ADP++P+ KPVPY+GIQ V IPEFQ+IGT VGK FS ALTGQ +V+ AL + Sbjct: 360 QVTLQMMKHADPSQPSAKPVPYVGIQYVVIPEFQSIGTSVGKLFSAALTGQMSVEQALAS 419 Query: 421 AQTTTEREMKRAGYPK 436 AQ+TTEREMKRAGYPK Sbjct: 420 AQSTTEREMKRAGYPK 435 Lambda K H 0.315 0.130 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 708 Number of extensions: 20 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 436 Length of database: 436 Length adjustment: 32 Effective length of query: 404 Effective length of database: 404 Effective search space: 163216 Effective search space used: 163216 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory