Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:D8IZC7 (521 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 379 bits (974), Expect = e-109 Identities = 214/506 (42%), Positives = 320/506 (63%), Gaps = 21/506 (4%) Query: 6 LLQMRGIRKSFGATLALSDMHLTIRPGEIHALMGENGAGKSTLMKVLSGV--HAPDQGEI 63 LLQM GI K+FG AL+ + + +RPGE L GENGAGKSTLMKVLS V H +GEI Sbjct: 5 LLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEI 64 Query: 64 LLDGRPVALRDPGASRAAGINLIYQELAVAPNISVAANVFMGSELRTRLGLIDHAAMRSR 123 + DG+P+ + + AAGI +I+QEL + P++SVA N+FMG EL G +++ AM R Sbjct: 65 IWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIHR 124 Query: 124 TDAVLRQLGAGFGASDLAGRLSIAE-----QQQVEIARALVHRSRIVIMDEPTAALSERE 178 +A++R+L D+ L +++ QQ VEIA+AL ++R++I+DEP++AL+ E Sbjct: 125 AEALMRELKV----PDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSE 180 Query: 179 TEQLFNVVRRLRDEGLAIIYISHRMAEVYALADRVTVLRDGSFVGELVRDEIDSERIVQM 238 E L +++R L+ +G+A +YISH++ EV A+ D ++V+RDG + ++D +I+ Sbjct: 181 IEVLLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQ 240 Query: 239 MVGRSLSEFYQHQRIAPADAAQL------PTVMQVRALAGGKIRPASFDVRAGEVLGFAG 292 MVGR +S Y + P D ++ T V ++ SF ++ GE+LG AG Sbjct: 241 MVGREMSNLYPTE---PHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAG 297 Query: 293 LVGAGRTELARLLFGADP-RSGGDILLEGRPVHIDQPRAAMRAGIAYVPEDRKGQGLFLQ 351 LVGAGRTEL LFGA P R G++ L G+ + P ++RAG+ VPEDRK QG+ Sbjct: 298 LVGAGRTELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPD 357 Query: 352 MAVAANATMNVASRHTRLGLVRSRSLGGVARAAIQRLNVKVAHPETPVGKLSGGNQQKVL 411 + V N T+ V +++L + + + G I R+++K A P P+ LSGGNQQK + Sbjct: 358 LGVGQNITLAVLDNYSKLTRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAV 417 Query: 412 LARWLEIAPKVLILDEPTRGVDIYAKSEIYQLVHRLASQGVAVVVISSELPEVIGICDRV 471 LA+ L P+VLILDEPTRGVD+ AK EIY+L+ LA++GV+++++SSEL EV+G+ DRV Sbjct: 418 LAKMLLTKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDRV 477 Query: 472 LVMREGMITGELAGAAITQENIMRLA 497 LV+ +G + G+ +TQE ++ A Sbjct: 478 LVIGDGQLRGDFINHELTQEQVLAAA 503 Lambda K H 0.320 0.135 0.378 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 665 Number of extensions: 28 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 518 Length adjustment: 35 Effective length of query: 486 Effective length of database: 483 Effective search space: 234738 Effective search space used: 234738 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory