Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate AO356_23205 AO356_23205 D-ribose transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_23205 Length = 517 Score = 378 bits (970), Expect = e-109 Identities = 214/494 (43%), Positives = 309/494 (62%), Gaps = 10/494 (2%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 LL+V VSK FPGV AL V L V G V AL+GENGAGKSTL+KI++ + DAG + Sbjct: 26 LLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRL 85 Query: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRR-LGLVDWSRLRADA 121 G+ + D PL Q GIA I+QE NL P +S+AEN+++GRE L +VD + Sbjct: 86 RGKPVT-FDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGLHMVDHGEMHRCT 144 Query: 122 QALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 LL L + L+P+ V L++AE+QMVEIAKA++ ++ ++IMDEPT+A++ EV L + Sbjct: 145 ARLLERLRIKLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAHLFS 204 Query: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 IIA LK++ +IY++H++ EV A+ D V RDG ++ ++ ++ +MVGR + Sbjct: 205 IIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGREL 264 Query: 242 EFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTDL 301 R +P G +VL V LS G + VSF GEI+G+AGL+G+GRT++ Sbjct: 265 SQLFPVREQPIGELVLSVRD-------LSLDGIFKGVSFDLHAGEILGIAGLMGSGRTNV 317 Query: 302 ARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNLSLP 361 A IFG P G + +D +P+R+ P AI+ G L+ EDRK G F S+ N+ + Sbjct: 318 AEAIFGVTPSTGGEIRLDGQPVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMA 377 Query: 362 SLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALTP 421 L G ++ ++A R L E +KLR+K E I LSGGNQQK LL R + P Sbjct: 378 VLPHYVGNG-FIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNP 436 Query: 422 KVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVIV 481 ++LI+DEPTRGID+GAKAE+++++S LA G+AV++ISSEL EV+ +SDR++V EG ++ Sbjct: 437 RILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGDLM 496 Query: 482 ADLDAQTATEEGLM 495 LD AT+E +M Sbjct: 497 GTLDRSEATQERVM 510 Score = 95.1 bits (235), Expect = 5e-24 Identities = 70/244 (28%), Positives = 123/244 (50%), Gaps = 11/244 (4%) Query: 256 VLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTDLARLIFGADPIAAGR 315 +L+V V+ P + A L V R G ++ L G GAG++ L ++I G AG Sbjct: 26 LLEVVNVSKGFPGVVA---LSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGE 82 Query: 316 VLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDH-SIRRNLSLPSLKALSALGQWVD 374 + + KP+ +P A+QAGI ++ ++ + H SI N+ + + L+ L VD Sbjct: 83 LRLRGKPVTFDTPLAALQAGIAMIHQELN----LMPHMSIAENIWI-GREQLNGL-HMVD 136 Query: 375 ERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALTPKVLIVDEPTRGID 434 ++LRIK+ D E +G LS +Q V + +A++ +LI+DEPT I Sbjct: 137 HGEMHRCTARLLERLRIKL-DPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAIT 195 Query: 435 IGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVIVADLDAQTATEEGL 494 A + +++DL G ++ I+ ++ EV A++D + VFR+G + A + + L Sbjct: 196 ETEVAHLFSIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSL 255 Query: 495 MAYM 498 ++ M Sbjct: 256 ISMM 259 Score = 70.1 bits (170), Expect = 2e-16 Identities = 58/220 (26%), Positives = 102/220 (46%), Gaps = 15/220 (6%) Query: 29 GEVHALLGENGAGKSTLIKILSAAHAADAGTVTFAGQVLDPRDAPLRRQQLGIATIYQE- 87 GE+ + G G+G++ + + + + G + GQ + D P + G A + ++ Sbjct: 301 GEILGIAGLMGSGRTNVAEAIFGVTPSTGGEIRLDGQPVRISD-PHMAIEKGFALLTEDR 359 Query: 88 --FNLFPELSVAENMYLGREPRRLG--LVDWSRLRADAQALLNDLGLPLNPDAP-----V 138 LFP LSV ENM + P +G + LRA L D+ L P + Sbjct: 360 KLSGLFPCLSVLENMEMAVLPHYVGNGFIQQKALRA----LCEDMCKKLRVKTPSLEQCI 415 Query: 139 RGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHAIIAGLKARSVSVIYVSH 198 L+ QQ +A+ + N R++I+DEPT + ++ +I+ L + ++VI +S Sbjct: 416 DTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISS 475 Query: 199 RLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVG 238 L EV M DR VM +G + + D ++ +++L G Sbjct: 476 ELPEVLGMSDRVMVMHEGDLMGTLDRSEATQERVMQLASG 515 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 661 Number of extensions: 36 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 515 Length of database: 517 Length adjustment: 35 Effective length of query: 480 Effective length of database: 482 Effective search space: 231360 Effective search space used: 231360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory