Align D-mannonate oxidoreductase; EC 1.1.1.57; Fructuronate reductase (uncharacterized)
to candidate AO356_27690 AO356_27690 mannitol dehydrogenase
Query= curated2:P39160 (486 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_27690 AO356_27690 mannitol dehydrogenase Length = 493 Score = 355 bits (911), Expect = e-102 Identities = 192/473 (40%), Positives = 275/473 (58%), Gaps = 6/473 (1%) Query: 8 NLPVARPSWDHSRLESRIVHLGCGAFHRAHQALYTHHLLES-TDSDWGICEVNLMPGNDR 66 N VA P++ + I H+G G FHRAHQA YT L+ + D DW IC V L DR Sbjct: 12 NPDVALPAYPLGDIRQGIAHIGVGGFHRAHQAYYTDALMNTGVDLDWAICGVGLR-AEDR 70 Query: 67 VLIENLKKQQLLYTVAEKG-AESTELKIIGSMKEALHPEIDGCEGILNAMARPQTAIVSL 125 ++L Q L+T+ E G + TE+++IG++ + L E DG + +++ +A PQ IVSL Sbjct: 71 RARDDLASQDYLFTLYELGDTDDTEVRVIGAINDMLLAE-DGAQALIDKLADPQIRIVSL 129 Query: 126 TVTEKGYCADAASGQLDLNNPLIKHDLENPTAPKSAIGYIVEALRLRREKGLKAFTVMSC 185 T+TE GYC D ++G+ + P I+HDL +P APK+ G++ AL RR G+ AFT+MSC Sbjct: 130 TITEGGYCIDDSNGEFMAHLPQIQHDLNHPEAPKTVFGFLCAALAKRRAAGIPAFTLMSC 189 Query: 186 DNVRENGHVAKVAVLGLAQARDPQLAAWIEENVTFPCTMVDRIVPAATPETLQEIADQLG 245 DN+ NG V + A+L A RD +L WI+ NV+FP MVDRI P + ++ D+ G Sbjct: 190 DNLPHNGAVTRKALLAFAALRDAELGQWIDRNVSFPNAMVDRITPMTSVTHRLQLHDEHG 249 Query: 246 VYDPCAIACEPFRQWVIEDNFVNGRPDWDKVGAQFVADVVPFEMMKLRMLNGSHSFLAYL 305 + D + CEPF QWV+ED FV+GRP W+KVG QF DV P+E MK+++LNGSH L YL Sbjct: 250 IDDAWPVVCEPFVQWVLEDKFVSGRPAWEKVGVQFTDDVSPYEEMKIKLLNGSHLALTYL 309 Query: 306 GYLGGYETIADTVTNPAYRKAAFALMMQEQAPTLSMPEGTDLNAYATLLIERFSNPSLRH 365 G+L GY + +T+ +P + + A M + P L+ G DL Y L+ERFSN ++ Sbjct: 310 GFLKGYRFVHETMNDPLFVRYIRAYMDLDVTPQLAPVPGIDLTDYKNTLVERFSNQAIAD 369 Query: 366 RTWQIAMDGSQKLPQRLLDPVRLHLQNGGSWRHLALGVAGWMRYTQGVDEQGNAIDVVDP 425 + ++ DGS K P+ + + + +GG R AL VA W Y +GVDE G + DP Sbjct: 370 QLERVCSDGSSKFPKFTVPTINRLIADGGETRRAALVVAAWAVYLKGVDENGVTYSIPDP 429 Query: 426 MLAEFQKINAQYQGADRVKALLGLSGIFADDLPQNADFVGAVTAAYQQLCERG 478 A Q + A A + +L + IF +P++ +FV A L E G Sbjct: 430 RAAFCQALVA--DDALVTQRMLEVEEIFGTAIPRSPEFVAAFEWCCNSLREHG 480 Lambda K H 0.320 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 646 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 493 Length adjustment: 34 Effective length of query: 452 Effective length of database: 459 Effective search space: 207468 Effective search space used: 207468 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory