Align 4-aminobutyrate aminotransferase GabT; 5-aminovalerate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.48 (characterized)
to candidate AO356_26715 AO356_26715 4-aminobutyrate aminotransferase
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_26715 Length = 430 Score = 434 bits (1117), Expect = e-126 Identities = 213/421 (50%), Positives = 286/421 (67%), Gaps = 4/421 (0%) Query: 1 MNSNKE----LMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTG 56 MNS E L+++R Q +PRG+ HP+ DRA+ VWDV+G YLDF GGI VLN G Sbjct: 1 MNSKVEETPSLLRQRDQFVPRGLVTAHPLVIDRAQGAEVWDVDGARYLDFVGGIGVLNIG 60 Query: 57 HLHPKVVAAVEAQLKKLSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVE 116 H HPKVVAAV+AQL+K+SH CFQV+AY+PYL+L + + + V G A K L T+G+EAVE Sbjct: 61 HNHPKVVAAVQAQLQKVSHACFQVVAYKPYLDLVKRLCELVGGQQAYKAALFTSGAEAVE 120 Query: 117 NAVKIARAATKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLH 176 NAVKIARA T R I+F G +HGRT LTG PY G V+ YP Sbjct: 121 NAVKIARAHTNRPAVISFRGGFHGRTLLGTTLTGMSQPYKQNFGPFAPEVFHTPYPNAYR 180 Query: 177 GISEDDAIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIML 236 G S + A+ +++ + AP+ +AAI+IEPVQG+GGF ++ P F+Q LR L ++HGI+L Sbjct: 181 GFSSEMALQALNELLATQVAPDRVAAIIIEPVQGDGGFLSAPPEFLQALRTLTEQHGIVL 240 Query: 237 IADEVQSGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGG 296 I DE+Q+G GRTG F + G+ PDL T AKS+AGG P++GV GRA +MDA PGGLGG Sbjct: 241 ILDEIQTGFGRTGKWFGFQHAGIQPDLVTVAKSLAGGLPISGVVGRAHIMDAPLPGGLGG 300 Query: 297 TYAGNPIACVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIA 356 TY GN ++C AAL V+ +EQE LL++ LG++L+ GLL + +HP IGDVRG G M+A Sbjct: 301 TYGGNALSCAAALAVIDAYEQEQLLERGQVLGERLRQGLLRLQARHPRIGDVRGTGFMLA 360 Query: 357 IELFEDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEI 416 IEL +D + PDA+LT +++ +AR L+++ CG + NVLR L PL E++QI + L I Sbjct: 361 IELIKDDEARSPDAELTQQLIDQARVGRLLVIKCGVHRNVLRFLAPLVTEESQIDEALTI 420 Query: 417 I 417 + Sbjct: 421 L 421 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 532 Number of extensions: 19 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 430 Length adjustment: 32 Effective length of query: 394 Effective length of database: 398 Effective search space: 156812 Effective search space used: 156812 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory