Align GABA permease; 4-amino butyrate transport carrier; Gamma-aminobutyrate permease; Proline transporter GabP (characterized)
to candidate AO356_11625 AO356_11625 GABA permease
Query= SwissProt::P46349 (469 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_11625 Length = 464 Score = 461 bits (1185), Expect = e-134 Identities = 233/458 (50%), Positives = 323/458 (70%), Gaps = 2/458 (0%) Query: 3 QSQSGLKKELKTRHMTMISIAGVIGAGLFVGSGSVIHSTGPGAVVSYALAGLLVIFIMRM 62 Q+ L + LK RH+TM+SIAGVIGAGLFVGSG I + GP +++YA AG LV+ +MRM Sbjct: 5 QTSDNLAQGLKPRHVTMLSIAGVIGAGLFVGSGHAIAAAGPAVLLAYAAAGALVVLVMRM 64 Query: 63 LGEMSAVNPTSGSFSQYAHDAIGPWAGFTIGWLYWFFWVIVIAIEAIAGAGIIQYWFHDI 122 LGEM+ +P +GSFS YA AIG WAGFTIGWLYW+FWV+VI +EA A A I+ WF ++ Sbjct: 65 LGEMAVASPDTGSFSTYADRAIGHWAGFTIGWLYWWFWVLVIPLEANAAATILHAWFPNV 124 Query: 123 PLWLTSLILTIVLTLTNVYSVKSFGEFEYWFSLIKVVTIIAFLIVGFAFIFGFAPGSEPV 182 +W+ +L++T++LT+TN++SVK++GEFE+WF+L+KVV II F+ +G IFG P S+ Sbjct: 125 AIWVFTLVITLLLTVTNLFSVKNYGEFEFWFALVKVVAIIGFIGLGLMAIFGVLPTSQVS 184 Query: 183 GFSNLTGKGGFFPEGISSVLLGIVVVIFSFMGTEIVAIAAGETSNPIESVTKATRSVVWR 242 G S+L GF P G+ +VL I+ +FSFMGTEIV IAA E+ NP + ++KAT SV+WR Sbjct: 185 GVSHLFDTQGFLPNGMGAVLGAILTTMFSFMGTEIVTIAAAESKNPGQQISKATNSVIWR 244 Query: 243 IIVFYVGSIAIVVALLPWNSANILE-SPFVAVLEHIGVPAAAQIMNFIVLTAVLSCLNSG 301 I +FY+ SI IVVAL+PWN + + VLE +G+P A I++ +VL AV SCLNS Sbjct: 245 IGLFYLVSIFIVVALVPWNDPLLASVGSYQTVLERMGIPNAKLIVDIVVLVAVTSCLNSA 304 Query: 302 LYTTSRMLYSLAERNEAPRRFMKLSKKGVPVQAIVAGTFFSYIAVVMNYFSPDTVFLFLV 361 LYT SRM++SL +R +AP + +K G P A++ T +++AV NY +P VF FL+ Sbjct: 305 LYTASRMMFSLGKRGDAPAVSQRTNKSGTPHWAVMLSTGAAFLAVFANYVAPAAVFEFLL 364 Query: 362 NSSGAIALLVYLVIAVSQLKMRKKLEKTNPEALKIKMWLFPFLTYLTIIAICGILVSMAF 421 SSGAIALLVYLVIAVSQL+MRK+ E + MWLFP LTY I+ I G L M F Sbjct: 365 ASSGAIALLVYLVIAVSQLRMRKQ-RMARGEKIAFSMWLFPGLTYAVIVFIVGALTIMLF 423 Query: 422 IDSMRDELLLTGVITGIVLISYLVFRKRKVSEKAAANP 459 ++ R E+L TG+++ +V+IS ++ ++R++ + + P Sbjct: 424 QEAHRVEILATGLLSVLVVISGVLIQRRRIVKAGSPVP 461 Lambda K H 0.326 0.140 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 632 Number of extensions: 23 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 469 Length of database: 464 Length adjustment: 33 Effective length of query: 436 Effective length of database: 431 Effective search space: 187916 Effective search space used: 187916 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory