Align GABA permease; 4-amino butyrate transport carrier; Gamma-aminobutyrate permease; Proline transporter GabP (characterized)
to candidate AO356_15120 AO356_15120 amino acid transporter
Query= SwissProt::P46349 (469 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_15120 Length = 476 Score = 334 bits (857), Expect = 3e-96 Identities = 174/469 (37%), Positives = 281/469 (59%), Gaps = 19/469 (4%) Query: 4 SQSGLKKELKTRHMTMISIAGVIGAGLFVGSGSVIHSTGP-GAVVSYALAGLLVIFIMRM 62 +++G K+E++TRH+ M+++ GVIG GLF+ SG ++ GP GAV++Y + L+V +M Sbjct: 10 TRTGFKQEMQTRHIVMLALGGVIGTGLFLTSGYTVNQAGPMGAVIAYIIGALMVYMVMMC 69 Query: 63 LGEMSAVNPTSGSFSQYAHDAIGPWAGFTIGWLYWFFWVIVIAIEAIAGAGIIQYWFHDI 122 LGE++ P +GSFS YA +GP G+T+ WLYW W + I E A ++ WF D Sbjct: 70 LGELAVQMPETGSFSTYATRFLGPGTGYTVAWLYWLTWTVAIGSEFTAAGILMSRWFPDT 129 Query: 123 PLWLTSLILTIVLTLTNVYSVKSFGEFEYWFSLIKVVTIIAFLIVGFAFIFGFA--PGSE 180 P+W+ S + V+ LTNV SV+ F E E+W SLIKV+T++ FL++G I G + Sbjct: 130 PVWIWSALFAGVVFLTNVVSVRLFAETEFWLSLIKVLTVVVFLLIGGGAILGLLNIDQAH 189 Query: 181 PVGFSNLTGKGGFFPEGISSVLLGIVVVIFSFMGTEIVAIAAGETSNPIESVTKATRSVV 240 +G SN T + G FP G + + ++ V F+F GTE++ IAAGET +P +V +A R+ V Sbjct: 190 SIGLSNFT-REGLFPTGFMPIAMTLLAVSFAFSGTELIGIAAGETKDPQRNVPRAIRTTV 248 Query: 241 WRIIVFYVGSIAIVVALLPWNSANILESPFVAVLEHIGVPAAAQIMNFIVLTAVLSCLNS 300 R+ VF+VG+I ++ LLP A ++ESPFV V +IG+P +A IMNF++++A+LS NS Sbjct: 249 LRLAVFFVGTIFVLATLLPREQAGLVESPFVTVFTYIGIPYSADIMNFVIISALLSAANS 308 Query: 301 GLYTTSRMLYSLAERNEAPRRFMKLSKKGVPVQAIVAGTFFSYIAVVMNYFSPDTVFLFL 360 GLY SRML++L+++ P++F L++ G P+ AI+ +++ + F+ DT++L L Sbjct: 309 GLYAASRMLWTLSDQGHLPKQFSALTRMGTPLNAIIVSMAGGAASLLSSVFAADTIYLAL 368 Query: 361 VNSSGAIALLVYLVIAVSQLKMRKKLEKTNPEA--LKIKMWLFPFLTYLTIIAICGILVS 418 V+ SG ++V++ IA SQ+ R+ + LK ++ +P++ ++ V Sbjct: 369 VSISGLAVVVVWMSIAASQIAFRRHYVANGGDIRDLKFRVRGYPWVPLGALVCCSLACVG 428 Query: 419 MAFIDSMRDELLLTGVITGIVLISYLVF--------RKRKVSEKAAANP 459 +AF R L G+ I++ F R+R++S A P Sbjct: 429 IAFDPEQRVALYF-----GLPFIAWCYFVYYITRKSRERRLSVALVAQP 472 Lambda K H 0.326 0.140 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 578 Number of extensions: 23 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 469 Length of database: 476 Length adjustment: 33 Effective length of query: 436 Effective length of database: 443 Effective search space: 193148 Effective search space used: 193148 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory