Align Serine transporter, SerP2 or YdgB, of 459 aas and 12 TMSs (Trip et al. 2013). Transports L-alanine (Km = 20 μM), D-alanine (Km = 38 μM), L-serine, D-serine (Km = 356 μM) and glycine (Noens and Lolkema 2015). The encoding gene is adjacent to the one encoding SerP1 (TC# 2.A.3.1.21) (characterized)
to candidate AO356_17670 AO356_17670 D-alanine/D-serine/glycine permease
Query= TCDB::F2HQ24 (457 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_17670 Length = 473 Score = 295 bits (756), Expect = 2e-84 Identities = 170/458 (37%), Positives = 260/458 (56%), Gaps = 9/458 (1%) Query: 5 QNEENKPSQRGLKNRHIQLIAIAGTIGTGLFLGAGKSIHLTGPSIIFVYLIIGALMYILL 64 + + P +R L RHI+L+A+ IG GLFLG+ K+I + GP+I+ Y+I G + +++ Sbjct: 11 ETAQGGPLKRELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYIIGGLAILVIM 70 Query: 65 RAIGEMLYQDPNQHSFLNFVSRYLGEKPGYFIQWSYLLVVVFVAMAELIAIGTYINFWLP 124 RA+GEM +P SF + YLG G+ W+Y + + +AE+ A+ Y+ W P Sbjct: 71 RALGEMAVHNPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITAVAVYMGIWFP 130 Query: 125 DLPIWMTEVFVLVLLTLLNTLNPKFFGETEFWFGMIKIVAIIGLILTAIILIFSHYHTGT 184 D+P W+ + LV + +N + K FGE EFWF +IKIV II +++ + +I + Sbjct: 131 DVPRWIWALAALVSMGSINLIAVKAFGEFEFWFALIKIVTIIAMVIGGVGIIAFGFGNDG 190 Query: 185 DTVSVTNITKGFEFFPNGLSNFFESFQMVMFAFVSMEFIGMTAAETDNPRPTLKKAINQI 244 + ++N+ F PNG+S S QMVMFA++ +E IG+TA E NP+ T+ AI + Sbjct: 191 VALGISNLWAHGGFMPNGVSGVLMSLQMVMFAYLGVEMIGLTAGEAKNPQKTIPNAIGSV 250 Query: 245 PIRIVLFYVGALLAIMSIYQWRDIPADKSPFVTIFQLIGIKWAAALVNFVVLTSAASALN 304 RI+LFYVGAL I+SIY W +I SPFV F+ +GIK AA ++NFVV+T+A S+ N Sbjct: 251 FWRILLFYVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFVVITAALSSCN 310 Query: 305 SALFSITRNLYSLSKLNNDKILKPFTKFSKAGVPVNALLFTSLLILFTPFIS-MIPAISN 363 +FS R LYSL++ N + F K S GVP ALL + +L ++ ++P Sbjct: 311 GGIFSTGRMLYSLAQ--NGQAPAGFAKTSTNGVPRRALLLSIAALLLGVLLNYLVP--EK 366 Query: 364 SFVFITSVATNLFLVVYLMTLITYLKYRKSSDFDPKGFVLPAAHIF---IPLAIAGFVLI 420 FV++TS+AT + ++M L+ LK+RKS + + ++ LA+A VL+ Sbjct: 367 VFVWVTSIATFGAIWTWVMILLAQLKFRKSLSASERAALKYRMWLYPVSSYLALAFLVLV 426 Query: 421 FISLFCFKDTIVPA-IGSVIWVLIFGLFTFFKKIKTAE 457 + F DT V +G VL+ LF FK T + Sbjct: 427 VGLMAYFPDTRVALYVGPAFLVLLTVLFYTFKLQPTGD 464 Lambda K H 0.330 0.144 0.431 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 554 Number of extensions: 28 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 457 Length of database: 473 Length adjustment: 33 Effective length of query: 424 Effective length of database: 440 Effective search space: 186560 Effective search space used: 186560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory