Align ABC transporter for D-Sorbitol, periplasmic substrate-binding component (characterized)
to candidate AO356_00025 AO356_00025 sugar ABC transporter substrate-binding protein
Query= reanno::pseudo5_N2C3_1:AO356_00025 (436 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_00025 AO356_00025 sugar ABC transporter substrate-binding protein Length = 436 Score = 884 bits (2283), Expect = 0.0 Identities = 436/436 (100%), Positives = 436/436 (100%) Query: 1 MKITNALILSTGLSFALASHAAETLTIATVNNGDMIRMQRLSKVFEQQHPDIKLNWVVLE 60 MKITNALILSTGLSFALASHAAETLTIATVNNGDMIRMQRLSKVFEQQHPDIKLNWVVLE Sbjct: 1 MKITNALILSTGLSFALASHAAETLTIATVNNGDMIRMQRLSKVFEQQHPDIKLNWVVLE 60 Query: 61 ENVLRQRLTTDIATQGGQFDVLTIGTYETPMWGAKNWLEPMKDLPAGYDVDDIFPAVRQG 120 ENVLRQRLTTDIATQGGQFDVLTIGTYETPMWGAKNWLEPMKDLPAGYDVDDIFPAVRQG Sbjct: 61 ENVLRQRLTTDIATQGGQFDVLTIGTYETPMWGAKNWLEPMKDLPAGYDVDDIFPAVRQG 120 Query: 121 LSVNDTLYALPFYGESTITYYRTDLFKAAGLTMPGQPTWSQLGEFAAKLNDPSKDQYGMC 180 LSVNDTLYALPFYGESTITYYRTDLFKAAGLTMPGQPTWSQLGEFAAKLNDPSKDQYGMC Sbjct: 121 LSVNDTLYALPFYGESTITYYRTDLFKAAGLTMPGQPTWSQLGEFAAKLNDPSKDQYGMC 180 Query: 181 LRGKAGWGENMALLTTMANAFGARWFDEKWQPELNGPEWKAAATFYVDTLKKYGPPGVSS 240 LRGKAGWGENMALLTTMANAFGARWFDEKWQPELNGPEWKAAATFYVDTLKKYGPPGVSS Sbjct: 181 LRGKAGWGENMALLTTMANAFGARWFDEKWQPELNGPEWKAAATFYVDTLKKYGPPGVSS 240 Query: 241 NGFNETLALFNSGKCAIWVDASVAGSFTTDKEQSRVVDSVGFAPAPIEVTDKGSSWLYAW 300 NGFNETLALFNSGKCAIWVDASVAGSFTTDKEQSRVVDSVGFAPAPIEVTDKGSSWLYAW Sbjct: 241 NGFNETLALFNSGKCAIWVDASVAGSFTTDKEQSRVVDSVGFAPAPIEVTDKGSSWLYAW 300 Query: 301 SLAIPATSKHKEAAKSFVTWATSKEYIQLVTDKDGITNVPPGTRISTYSDAYLKAAPFAQ 360 SLAIPATSKHKEAAKSFVTWATSKEYIQLVTDKDGITNVPPGTRISTYSDAYLKAAPFAQ Sbjct: 301 SLAIPATSKHKEAAKSFVTWATSKEYIQLVTDKDGITNVPPGTRISTYSDAYLKAAPFAQ 360 Query: 361 VTLQMMKHADPSQPSAKPVPYVGIQYVVIPEFQSIGTSVGKLFSAALTGQMSVEQALASA 420 VTLQMMKHADPSQPSAKPVPYVGIQYVVIPEFQSIGTSVGKLFSAALTGQMSVEQALASA Sbjct: 361 VTLQMMKHADPSQPSAKPVPYVGIQYVVIPEFQSIGTSVGKLFSAALTGQMSVEQALASA 420 Query: 421 QSTTEREMKRAGYPKK 436 QSTTEREMKRAGYPKK Sbjct: 421 QSTTEREMKRAGYPKK 436 Lambda K H 0.316 0.130 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 862 Number of extensions: 17 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 436 Length of database: 436 Length adjustment: 32 Effective length of query: 404 Effective length of database: 404 Effective search space: 163216 Effective search space used: 163216 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory