Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate AO356_23205 AO356_23205 D-ribose transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_23205 Length = 517 Score = 405 bits (1040), Expect = e-117 Identities = 240/518 (46%), Positives = 329/518 (63%), Gaps = 18/518 (3%) Query: 1 MSDMSDTSTKAP-LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKIL 59 M+ D S P LL + N+ K FPGV AL V+L G V ALMGENGAGKSTLMKI+ Sbjct: 13 MTFQPDVSLDEPYLLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKII 72 Query: 60 SGAYTADPGGECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRR 119 +G Y D GE + G+ V D P +A G+A+I+QEL+L P++S+AENI++GR Q Sbjct: 73 AGIYQPD-AGELRLRGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGRE-QLN 130 Query: 120 GL--VARGDMVRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEP 177 GL V G+M R A L RL P V +LSIA+RQ+VEIA+AV +++ IL+MDEP Sbjct: 131 GLHMVDHGEMHRCTARLLERLRIKLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEP 190 Query: 178 TTPLSTHETDRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHL 237 T+ ++ E LF++I L+ +G I+YI+H+M E+ +AD V V RDG ++G + Sbjct: 191 TSAITETEVAHLFSIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSM 250 Query: 238 SQAALVKMMVGRDLSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAG 297 +L+ MMVGR+LS + Q + E++LSVRD++ KG SFDL AGE+LG+AG Sbjct: 251 DGDSLISMMVGRELSQLFP-VREQPIG-ELVLSVRDLSLDGIFKGVSFDLHAGEILGIAG 308 Query: 298 LVGAGRTELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKL 357 L+G+GRT +A +FG T GE+R+ G V + P AI+ G A LTEDRKL Sbjct: 309 LMGSGRTNVAEAIFGVTPSTGGEIRL-----DGQPVRI--SDPHMAIEKGFALLTEDRKL 361 Query: 358 QGLFLDQSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSG 417 GLF SV EN+ + V +G G + + A R + L ++ + + LSG Sbjct: 362 SGLFPCLSVLENMEMAVLPH-YVGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSG 420 Query: 418 GNQQKVMLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEV 477 GNQQK +L+R L PR+LILDEPTRG+D+GAK+EIYRLI+ LA G+A++MISSELPEV Sbjct: 421 GNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEV 480 Query: 478 VGLCDRVLVMREGTLAGEVRPAGSAAETQERIIALATG 515 +G+ DRV+VM EG L G + + TQER++ LA+G Sbjct: 481 LGMSDRVMVMHEGDLMGTL---DRSEATQERVMQLASG 515 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 28 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 517 Length adjustment: 35 Effective length of query: 505 Effective length of database: 482 Effective search space: 243410 Effective search space used: 243410 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory