Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 322 bits (825), Expect = 2e-92 Identities = 204/510 (40%), Positives = 303/510 (59%), Gaps = 20/510 (3%) Query: 13 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPG-GEC 71 LL + I KTF GV+AL +++ GE L GENGAGKSTLMK+LS Y GE Sbjct: 5 LLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEI 64 Query: 72 HIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRG-LVARGDMVRA 130 DGQ ++ G+ +I+QEL+L P+LSVAENI++G L G + M+ Sbjct: 65 IWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIHR 124 Query: 131 CAPTLARLGA-DFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRL 189 + L D + + V+ +QLVEIA+A++ +AR+L++DEP++ L+ E + L Sbjct: 125 AEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSEIEVL 184 Query: 190 FALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGR 249 +IR L+ +G+A +YISH++ E+ + D ++V+RDG + T + ++ MVGR Sbjct: 185 LDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQMVGR 244 Query: 250 DLSGFY-TKTH--GQAVEREVMLSVRDVADGRR--VKGCSFDLRAGEVLGLAGLVGAGRT 304 ++S Y T+ H G+ + ++ DV + RR V SF L+ GE+LG+AGLVGAGRT Sbjct: 245 EMSNLYPTEPHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAGLVGAGRT 304 Query: 305 ELARLVFGA-DARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLD 363 EL +FGA R GEV + + P ++I AG+ + EDRK QG+ D Sbjct: 305 ELVSALFGAYPGRYEGEVWLNGQQ-------IDTRTPLKSIRAGLCMVPEDRKRQGIIPD 357 Query: 364 QSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKV 423 V +NI L V + L R++ A + I + ++ A + + +LSGGNQQK Sbjct: 358 LGVGQNITLAVLDNYSK-LTRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKA 416 Query: 424 MLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDR 483 +L+++L +PRVLILDEPTRGVD+GAK EIY+L+ ALA GV+I+M+SSEL EV+G+ DR Sbjct: 417 VLAKMLLTKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDR 476 Query: 484 VLVMREGTLAGEVRPAGSAAETQERIIALA 513 VLV+ +G L G+ + TQE+++A A Sbjct: 477 VLVIGDGQLRGDFI---NHELTQEQVLAAA 503 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 599 Number of extensions: 29 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 518 Length adjustment: 35 Effective length of query: 505 Effective length of database: 483 Effective search space: 243915 Effective search space used: 243915 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory