GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Pseudomonas fluorescens FW300-N2C3

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; 2-methyl-cis-aconitate hydratase; Iron-responsive protein-like; IRP-like; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate AO356_02385 AO356_02385 aconitate hydratase

Query= SwissProt::Q8ZP52
         (891 letters)



>FitnessBrowser__pseudo5_N2C3_1:AO356_02385
          Length = 913

 Score = 1253 bits (3241), Expect = 0.0
 Identities = 617/900 (68%), Positives = 728/900 (80%), Gaps = 21/900 (2%)

Query: 12  TLQAKDKTYHYYSLPLAAKSLGDIARLPKSLKVLLENLLRWQDGESVTDEDIQALAGWLK 71
           TLQ   +TYHY+SLP AA+SLGD+ +LP SLKVLLENLLRW+D ++VT  D++ALAGWLK
Sbjct: 12  TLQVDARTYHYFSLPDAARSLGDLDKLPMSLKVLLENLLRWEDEKTVTGADLKALAGWLK 71

Query: 72  NAHADREIAWRPARVLMQDFTGVPAVVDLAAMREAVKRLGGDTSKVNPLSPVDLVIDHSV 131
              +DREI +RPARVLMQDFTGVPAVVDLAAMR AV++ GGD  ++NPLSPVDLVIDHSV
Sbjct: 72  ERRSDREIQYRPARVLMQDFTGVPAVVDLAAMRAAVEKAGGDPQRINPLSPVDLVIDHSV 131

Query: 132 TVDHFGDDDAFEENVRLEMERNHERYMFLKWGKQAFSRFSVVPPGTGICHQVNLEYLGKA 191
            VD F    AFE+NV +EM+RN ERY FL+WG+ AF  FSVVPPGTGICHQVNLEYLG+ 
Sbjct: 132 MVDKFASSQAFEQNVDIEMQRNGERYAFLRWGQSAFDNFSVVPPGTGICHQVNLEYLGRT 191

Query: 192 VWSELQDGEWIAYPDSLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPDVVG 251
           VW++ +DG   A+PD+LVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIP+V+G
Sbjct: 192 VWTKEEDGRTYAFPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPEVIG 251

Query: 252 FKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADRATIANMSPEYG 311
           FKL GKLREGITATDLVLTVTQMLRK GVVGKFVEFYGDGL  LPLADRATIANM+PEYG
Sbjct: 252 FKLIGKLREGITATDLVLTVTQMLRKKGVVGKFVEFYGDGLADLPLADRATIANMAPEYG 311

Query: 312 ATCGFFPIDAITLEYMRLSGRSDDLVELVETYAKAQGMWRNPGDEPVFTSTLELDMGDVE 371
           ATCGFFP+D +TL+Y+RLSGR  + V+LVE Y KAQG+WR PG EPVFT TLELDMG VE
Sbjct: 312 ATCGFFPVDEVTLDYLRLSGRPAETVKLVEAYCKAQGLWRLPGQEPVFTDTLELDMGSVE 371

Query: 372 ASLAGPKRPQDRVALGDVPKAFAASAELELNTAQRDRQPVD------------------- 412
           ASLAGPKRPQDRV+L +V +AF+    L++    ++   ++                   
Sbjct: 372 ASLAGPKRPQDRVSLPNVGQAFSDFLGLQVKPTSKEEGRLESEGGGGVAVGNADQVGEAE 431

Query: 413 YTMNGQPYQLPDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPG 472
           Y   G  ++L +GAVVIAAITSCTNTSNPSV+MAAGLLAKKAV  GL R+PWVK+SLAPG
Sbjct: 432 YEFEGHTHRLKNGAVVIAAITSCTNTSNPSVMMAAGLLAKKAVEKGLVRKPWVKSSLAPG 491

Query: 473 SKVVSDYLAQAKLTPYLDELGFNLVGYGCTTCIGNSGPLPEPIETAIKKGDLTVGAVLSG 532
           SKVV+DY   A LT YLD+LGF+LVGYGCTTCIGNSGPLP+PIE AI+K DLTV +VLSG
Sbjct: 492 SKVVTDYYNAAGLTEYLDKLGFDLVGYGCTTCIGNSGPLPDPIEKAIQKADLTVASVLSG 551

Query: 533 NRNFEGRIHPLVKTNWLASPPLVVAYALAGNMNINLATDPLGYDRKGDPVYLKDIWPSAQ 592
           NRNFEGR+HPLVKTNWLASPPLVVAYALAG + I+++++PLG DR G PVYL+DIWPS+Q
Sbjct: 552 NRNFEGRVHPLVKTNWLASPPLVVAYALAGTVRIDISSEPLGNDRDGKPVYLRDIWPSSQ 611

Query: 593 EIARAVELVSSDMFRKEYAEVFEGTEEWKSIQVESSDTYGWQSDSTYIRLSPFFDEMQAQ 652
           E+A AV  V++ MF KEYA VF G E+W++I+V  + TY WQ DSTYI+  PFFD++   
Sbjct: 612 EVAAAVAQVNTSMFHKEYAAVFAGDEQWQAIEVPQAATYVWQDDSTYIQHPPFFDDIGGP 671

Query: 653 PAPVKDIHGARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQNHGVERKDFNSYGSRRGN 712
           P  V+++ GAR+LA+LGDSVTTDHISPAG+IK DSPAGRYL+  GVE +DFNSYGSRRGN
Sbjct: 672 PPAVRNVEGARVLALLGDSVTTDHISPAGNIKADSPAGRYLREQGVEPRDFNSYGSRRGN 731

Query: 713 HEVMMRGTFANIRIRNEMLPGVEGGMTRHLPGTEAMSIYDAAMLYQQEKTPLAVIAGKEY 772
           H+VMMRGTFANIRIRNEML G EGG T ++P  E M IYDAAMLYQ   TPL VIAG+EY
Sbjct: 732 HQVMMRGTFANIRIRNEMLDGEEGGNTIYIPSGERMPIYDAAMLYQATDTPLVVIAGQEY 791

Query: 773 GSGSSRDWAAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEEV 832
           G+GSSRDWAAKG  LLG++ VIAESFERIHRSNL+GMG+LPL+F     RK+L LTG E 
Sbjct: 792 GTGSSRDWAAKGTNLLGVKAVIAESFERIHRSNLVGMGVLPLQFKLDQNRKSLNLTGRET 851

Query: 833 IDIADLQN--LRPGATIPVTLTRSDGSKETVPCRCRIDTATELTYYQNDGILHYVIRNML 890
           +DI  L +  L P   +P+ +TR DG +E +   CRIDT  E+ Y++  GILHYV+R ++
Sbjct: 852 LDILGLNDVELTPRMNLPLVITREDGRQERIEVLCRIDTLNEVEYFKAGGILHYVLRQLI 911


Lambda     K      H
   0.317    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2231
Number of extensions: 95
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 913
Length adjustment: 43
Effective length of query: 848
Effective length of database: 870
Effective search space:   737760
Effective search space used:   737760
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory