Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate AO356_05105 AO356_05105 long-chain fatty acid--CoA ligase
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_05105 AO356_05105 long-chain fatty acid--CoA ligase Length = 562 Score = 239 bits (610), Expect = 2e-67 Identities = 166/539 (30%), Positives = 260/539 (48%), Gaps = 49/539 (9%) Query: 52 HQGRRYTYAQLQTEAHRLASAL-LGMGLTPGDRVGIWSHNNAEWVLMQLATAQVGLVLVN 110 + G TYA+L+ + A L L PGDR+ + N ++ + + GL++VN Sbjct: 45 NMGVTLTYAELERYSAAFAGYLQTHTDLAPGDRIAVQMPNILQYPIAVFGALRAGLIVVN 104 Query: 111 INPAYRTAEVEYALNKVGCKLLVSMARFKTSDYLGMLRELAPEWQGQQPGHLQAAKLPQL 170 NP Y E+ + G + LV + F ++E+ P+ Q +L AK+ L Sbjct: 105 TNPLYTAREMRHQFKDSGARALVYLNMFGQK-----VQEVLPDTDLQ---YLIEAKMGDL 156 Query: 171 KTVV--WIDDEAGQGADE-------PGLLRFTELIARGNAADPRLAQVAAGLQATDPINI 221 W+ + + P + F + G + V+ D + Sbjct: 157 MPTAKGWLVNTMVSKVKKMVPAYSLPQAISFKSALRLGRGQGIKPLNVSLD----DIAVL 212 Query: 222 QFTSGTTGFPKGATLTHRNILNNGFFIGECMKLTPADR----------LCIPVPLYHCFG 271 Q+T GTTG KGA LTH N++ N C+ D + P+PLYH + Sbjct: 213 QYTGGTTGLAKGAMLTHGNLVANMQQARACLGQLGEDGQPLLREGQEVMIAPLPLYHIYA 272 Query: 272 MVLGNLACF----THGATIVYPND--GFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPR 325 N C H I P D GF ++ +++ R + L G+ T+F+A +DHP Sbjct: 273 FT-ANCMCMMVTGNHNVLITNPRDIGGF-----IKELKNWRFSLLLGLNTLFVALMDHPD 326 Query: 326 FAEFNLSTLRTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSCQSSTDTPLSK 385 F + S L+ G+ +R +Q+ IT YG+TETSPV+ S+ Sbjct: 327 FKTLDFSHLKVTNSGGTALIKATAERW-QQLTGCGITEGYGLTETSPVA--SANPYGGKS 383 Query: 386 RVSTVGQVQPHLEVKIVDPDTGAVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDEGGW 445 R+ TVG P +K+++ D G P+G+RGE C KG +M GYW T E +D GW Sbjct: 384 RLGTVGMPVPGTLMKVINDD-GLEQPLGERGELCIKGPQIMKGYWNKPEATAEVLDSEGW 442 Query: 446 MHTGDLATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKY 505 +GD+A +D +G+V IV R KDM+I G N+YP EIE+ + HP+V + V+GVPD++ Sbjct: 443 FKSGDIAVIDPDGFVRIVDRKKDMIIVSGFNVYPNEIEDVVMAHPKVANCAVIGVPDERS 502 Query: 506 GEELCAWIIAKPGTQPTEDDIRAFCKGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKIRD 564 GE + +++A+ E +++A+CK YK+P++I S PMT GKI + ++RD Sbjct: 503 GEAVKLFVVAREAGVSLE-ELKAYCKENFTGYKIPKHIVLRDSLPMTPVGKILRRELRD 560 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 788 Number of extensions: 38 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 562 Length adjustment: 36 Effective length of query: 542 Effective length of database: 526 Effective search space: 285092 Effective search space used: 285092 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory