Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate AO356_10120 AO356_10120 3-hydroxyacyl-CoA dehydrogenase
Query= BRENDA::A4YDS4 (651 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_10120 Length = 408 Score = 166 bits (421), Expect = 1e-45 Identities = 132/401 (32%), Positives = 208/401 (51%), Gaps = 32/401 (7%) Query: 2 KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSL-KEGV 60 + V+G+G MG GI A AG V D + ++L+QA+ + + + G + ++ Sbjct: 10 RAAVVGAGTMGRGIVMCLANAGVAVQWVDNNPQMLEQALVAVAETYAHGVRQGRIDQDEA 69 Query: 61 EQVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPI 120 + +AR+ D A A++ D VIEAV E+LELK++IFR + P A+LA+NTS+L I Sbjct: 70 DARIARVTRADDYA-AIREVDLVIEAVYENLELKQSIFRELDGLLKPEAILASNTSALDI 128 Query: 121 SEIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKD 180 IA+V + P +V+G+HFF+P +M L+EIVRG TS V+ + + M K +++ + Sbjct: 129 DAIAAVTRRPAQVLGLHFFSPAHIMKLLEIVRGAQTSKAVLDAALVLGQRMGKVSVISGN 188 Query: 181 VPGFFVNRVL-LRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYS 239 GF NR+L ++EA L+E A +VD +A++ GF MG F + D G+D+ + Sbjct: 189 CHGFIGNRMLHPYVLEARKMLLEG--AFPHQVD-AALQGFGFAMGPFRMYDVVGIDLEWR 245 Query: 240 VWKAVTARGFKAFPCSSTEKLVSQGKLGVKSGSGYYQYPSPGK-------FVRPTLPSTS 292 + + +G A +L G+ G KSG+GYY Y PG V + S Sbjct: 246 A-RELAGKGQDAPEVQVDNRLCELGRFGQKSGNGYYHY-EPGSRQAEHDVEVDALVLQVS 303 Query: 293 KKLG--RYLISP----------AVNEVSYLLREGIVGKDDAEKGCVL-GLGLPK---GIL 336 + LG R I P VNE + +L+EGI A L G G P G + Sbjct: 304 EALGFQRREIGPEEILERCLLALVNEGAKILQEGIAESAHAIDLVYLNGYGFPADKGGPM 363 Query: 337 SYADEIGIDVVVNTLEEMRQTSGMDHYSPDPLLLSMVKEGK 377 ++ADE G++ + L E+ G D + P ++ + +GK Sbjct: 364 AWADEQGLEAIHARLLELETKQG-DQWKPARVIGELAAQGK 403 Score = 33.5 bits (75), Expect = 2e-05 Identities = 29/122 (23%), Positives = 53/122 (43%), Gaps = 13/122 (10%) Query: 295 LGRYLISPAVNEVSYLLREGIVGKDDAEKGCVLGLGLPKGILSYADEIGIDVVVNTLEEM 354 +G ++ P V E +L EG + G G G D +GID+ Sbjct: 193 IGNRMLHPYVLEARKMLLEGAFPHQ--VDAALQGFGFAMGPFRMYDVVGIDLEWRA---- 246 Query: 355 RQTSGMDHYSPDPLLLSMVKE-GKLGRKSGQGFHTY------AHEEAKYSTIVVRVEPPL 407 R+ +G +P+ + + + E G+ G+KSG G++ Y A + + +V++V L Sbjct: 247 RELAGKGQDAPEVQVDNRLCELGRFGQKSGNGYYHYEPGSRQAEHDVEVDALVLQVSEAL 306 Query: 408 AW 409 + Sbjct: 307 GF 308 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 582 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 408 Length adjustment: 35 Effective length of query: 616 Effective length of database: 373 Effective search space: 229768 Effective search space used: 229768 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory