Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate AO356_20250 AO356_20250 L-arabinose transporter ATP-binding protein
Query= uniprot:A0A1N7TX47 (495 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_20250 AO356_20250 L-arabinose transporter ATP-binding protein Length = 514 Score = 307 bits (787), Expect = 5e-88 Identities = 191/491 (38%), Positives = 282/491 (57%), Gaps = 6/491 (1%) Query: 7 LQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILLN 66 L+ + K++ GV AL + G VHAL G NGAGKST L IL G +G + + Sbjct: 16 LRFNGIGKSFPGVQALANISFVAHPGQVHALMGENGAGKSTLLKILGGAYIPSSGDLQIG 75 Query: 67 GAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRTRE 126 + F ++++A+G+A+I QEL +P MTVAEN++LG P R G +V+ L ++ Sbjct: 76 EQTMAFKGTADSIASGVAVIHQELHLVPEMTVAENLFLGHLPARFG-LVNRGVLRQQALT 134 Query: 127 LLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFKAI 186 LL L ++D + RLS+ Q QLVEIAKA S V+ DEPTS++ E L I Sbjct: 135 LLKGLADEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAII 194 Query: 187 RRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVES-GRMADIDRDHLVRGIVGQELT 245 RL +G ++YVSHR+ E+ +I + ++F+DG +V + M+++ D LV +VG+++ Sbjct: 195 ARLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRYVRTFENMSELTHDQLVTCMVGRDIQ 254 Query: 246 RIDHKVGRECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNCIYGL 305 I RE + LQV +L G +S Q+ +GEILG++GL+G+GR+E + GL Sbjct: 255 DIYDYRPRE-RGDVALQVKSLLGPGLREPVSFQVHKGEILGLFGLVGAGRTELFRLLSGL 313 Query: 306 TVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYKRLSS 365 GS+ L GK + + P+ I AG+ L EDRK G++ GS+ NI +SA S+ Sbjct: 314 ERQSEGSLVLHGKELKLRSPRDAIAAGVLLCPEDRKKEGIIPLGSVGENINISARPAHSA 373 Query: 366 WS-LINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCLLCDE 424 L+ E A+ +K L++KT + + +SGGNQQK +L + LS LL DE Sbjct: 374 LGCLLRGDWERGNADKQIKSLKVKTPAASQKIMYLSGGNQQKAILGRWLSMPMKVLLLDE 433 Query: 425 PTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVF-KGGRLVTISTDT 483 PTRGID GAK EIY ++ G A IVVSS+ E++ +SDRI V +G +S D Sbjct: 434 PTRGIDIGAKAEIYQIIHNLAADGIAVIVVSSDLMEVMGISDRILVLCEGAMRGELSRDQ 493 Query: 484 ALSQEALLRLA 494 A ++ LL+LA Sbjct: 494 A-NESNLLQLA 503 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 591 Number of extensions: 32 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 514 Length adjustment: 34 Effective length of query: 461 Effective length of database: 480 Effective search space: 221280 Effective search space used: 221280 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory