Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate AO356_23205 AO356_23205 D-ribose transporter ATP-binding protein
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_23205 Length = 517 Score = 397 bits (1019), Expect = e-115 Identities = 222/492 (45%), Positives = 308/492 (62%), Gaps = 1/492 (0%) Query: 4 PLLLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSI 63 P LL+ +V+K + GV AL D +L +R GSV AL G NGAGKST + I+ GI Q DAG + Sbjct: 24 PYLLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGEL 83 Query: 64 LLNGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRR 123 L G PV F+ P AL AGIAMI QEL +P+M++AENIW+GRE +VD+ ++R Sbjct: 84 RLRGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGLHMVDHGEMHRC 143 Query: 124 TRELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLF 183 T LL+ L +D + LS+A+ Q+VEIAKA S+D ++IMDEPTSAI E E LF Sbjct: 144 TARLLERLRIKLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAHLF 203 Query: 184 KAIRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQE 243 I L +QG GI+Y++H+++E+ IAD+ ++FRDGA++ R +D D L+ +VG+E Sbjct: 204 SIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGRE 263 Query: 244 LTRIDHKVGRECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNCIY 303 L+++ V + L V +LS G F +S L GEILGI GLMGSGR+ I+ Sbjct: 264 LSQL-FPVREQPIGELVLSVRDLSLDGIFKGVSFDLHAGEILGIAGLMGSGRTNVAEAIF 322 Query: 304 GLTVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYKRL 363 G+T + G + L G+P+ I P I G +L+TEDRK SGL S+L N+ ++ Sbjct: 323 GVTPSTGGEIRLDGQPVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAVLPHY 382 Query: 364 SSWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCLLCD 423 I + L EDM K+L++KT SLE + ++SGGNQQK +LA+ L T P L+ D Sbjct: 383 VGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRILILD 442 Query: 424 EPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVTISTDT 483 EPTRGID GAK EIY L+ G A I++SSE PE+L +SDR+ V G L+ + Sbjct: 443 EPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGDLMGTLDRS 502 Query: 484 ALSQEALLRLAS 495 +QE +++LAS Sbjct: 503 EATQERVMQLAS 514 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 594 Number of extensions: 25 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 517 Length adjustment: 34 Effective length of query: 461 Effective length of database: 483 Effective search space: 222663 Effective search space used: 222663 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory