Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 313 bits (801), Expect = 1e-89 Identities = 191/500 (38%), Positives = 282/500 (56%), Gaps = 12/500 (2%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDA--GSI 63 LLQ + K + GV AL + +R G LCG NGAGKST + +L + G I Sbjct: 5 LLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEI 64 Query: 64 LLNGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRR 123 + +G P++ SE AAGI +I QEL +P ++VAENI++G E G ++ A+ R Sbjct: 65 IWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIHR 124 Query: 124 TRELLDSLEF-DVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTL 182 L+ L+ D++ + P+ + QLVEIAKA + +++I+DEP+SA+ E + L Sbjct: 125 AEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSEIEVL 184 Query: 183 FKAIRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQ 242 IR L A+G VY+SH+L E+A + D S+ RDG + + M D+D ++ +VG+ Sbjct: 185 LDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQMVGR 244 Query: 243 ELTRI----DHKVGR---ECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGR 295 E++ + H +G E TC VDN R DIS L++GEILGI GL+G+GR Sbjct: 245 EMSNLYPTEPHDIGEVIFEARHVTCYDVDN-PRRKRVDDISFVLKRGEILGIAGLVGAGR 303 Query: 296 SEFLNCIYGLTVAD-SGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSN 354 +E ++ ++G G V L G+ + P +I AG+ +V EDRK G++ + N Sbjct: 304 TELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPDLGVGQN 363 Query: 355 IALSAYKRLSSWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLS 414 I L+ S + I+A E + + R+ +KT S LP+ S+SGGNQQK VLAK L Sbjct: 364 ITLAVLDNYSKLTRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAVLAKMLL 423 Query: 415 TEPVCLLCDEPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGG 474 T+P L+ DEPTRG+D GAK EIY L+ G + I+VSSE E+L +SDR+ V G Sbjct: 424 TKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDRVLVIGDG 483 Query: 475 RLVTISTDTALSQEALLRLA 494 +L + L+QE +L A Sbjct: 484 QLRGDFINHELTQEQVLAAA 503 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 592 Number of extensions: 23 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 518 Length adjustment: 34 Effective length of query: 461 Effective length of database: 484 Effective search space: 223124 Effective search space used: 223124 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory