Align Xylose import ATP-binding protein XylG; EC 7.5.2.10 (characterized)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= SwissProt::P37388 (513 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 550 bits (1418), Expect = e-161 Identities = 280/502 (55%), Positives = 374/502 (74%), Gaps = 3/502 (0%) Query: 3 YLLEMKNITKTFGSVKAIDNVCLRLNAGEIVSLCGENGSGKSTLMKVLCGIYPHGSYEGE 62 YLL+M I KTFG VKA++ + +++ GE V LCGENG+GKSTLMKVL +YPHG++EGE Sbjct: 4 YLLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGE 63 Query: 63 IIFAGEEIQASHIRDTERKGIAIIHQELALVKELTVLENIFLGNEIT-HNGIMDYDLMTL 121 II+ G+ ++A I +TE GI IIHQEL LV +L+V ENIF+G+E+T G M+Y M Sbjct: 64 IIWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIH 123 Query: 122 RCQKLLAQVSL-SISPDTRVGDLGLGQQQLVEIAKALNKQVRLLILDEPTASLTEQETSI 180 R + L+ ++ + ++ V G G QQLVEIAKALNKQ RLLILDEP+++LT E + Sbjct: 124 RAEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSEIEV 183 Query: 181 LLDIIRDLQQHGIACIYISHKLNEVKAISDTICVIRDGQHIGTRDAAGMSEDDIITMMVG 240 LLDIIRDL+ G+AC+YISHKL+EV A+ DTI VIRDG+HI T M IIT MVG Sbjct: 184 LLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQMVG 243 Query: 241 RELTALYPNEPHTTGDEILRIEHLTAWHPVNRHIKRVNDVSFSLKRGEILGIAGLVGAGR 300 RE++ LYP EPH G+ I H+T + N KRV+D+SF LKRGEILGIAGLVGAGR Sbjct: 244 REMSNLYPTEPHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAGLVGAGR 303 Query: 301 TETIQCLFGVWPGQWEGKIYIDGKQVDIRNCQQAIAQGIAMVPEDRKRDGIVPVMAVGKN 360 TE + LFG +PG++EG+++++G+Q+D R ++I G+ MVPEDRKR GI+P + VG+N Sbjct: 304 TELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPDLGVGQN 363 Query: 361 ITLAALNKFTGGISQLDDAAEQKCILESIQQLKVKTSSPDLAIGRLSGGNQQKAILARCL 420 ITLA L+ ++ ++++D AE I + I ++ +KT+SP L I LSGGNQQKA+LA+ L Sbjct: 364 ITLAVLDNYS-KLTRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAVLAKML 422 Query: 421 LLNPRILILDEPTRGIDIGAKYEIYKLINQLVQQGIAVIVISSELPEVLGLSDRVLVMHE 480 L PR+LILDEPTRG+D+GAKYEIYKL+ L +G+++I++SSEL EVLG+SDRVLV+ + Sbjct: 423 LTKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDRVLVIGD 482 Query: 481 GKLKANLINHNLTQEQVMEAAL 502 G+L+ + INH LTQEQV+ AAL Sbjct: 483 GQLRGDFINHELTQEQVLAAAL 504 Lambda K H 0.319 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 787 Number of extensions: 33 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 518 Length adjustment: 35 Effective length of query: 478 Effective length of database: 483 Effective search space: 230874 Effective search space used: 230874 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory