Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 340 bits (872), Expect = 7e-98 Identities = 202/508 (39%), Positives = 313/508 (61%), Gaps = 27/508 (5%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDA--GEI 71 +L+ GIVK F GV A++ +D +V E V L GENGAGKSTL+K+L+ V GEI Sbjct: 5 LLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEI 64 Query: 72 LVNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDEN 131 + +G+ ++ S + GI +IHQEL L +++VAENIF+ +E R++ Sbjct: 65 IWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLP-----GGRMNYP 119 Query: 132 YMYTRSKELL-DLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVE 190 M R++ L+ +L + V +Q+VEI KAL K+ R++ +DEP+S+LT Sbjct: 120 AMIHRAEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRS 179 Query: 191 ETERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIK 250 E E L +II LK++G++ V++SH+LDEV + D I V+RDGK I + D+ II Sbjct: 180 EIEVLLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIIT 239 Query: 251 MMVGREVEFF----PHGIETRPGEIALEVRNLKWKD-------KVKNVSFEVRKGEVLGF 299 MVGRE+ PH I GE+ E R++ D +V ++SF +++GE+LG Sbjct: 240 QMVGREMSNLYPTEPHDI----GEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGI 295 Query: 300 AGLVGAGRTETMLLVFGVNQ-KESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLV 358 AGLVGAGRTE + +FG + G++++NG++++ + P +I+ G+ ++PEDRK QG++ Sbjct: 296 AGLVGAGRTELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGII 355 Query: 359 LRMTVKDNIVLPSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQ 418 + V NI L L S+ + E + I ++ + R+ +KT S + +LSGGNQQ Sbjct: 356 PDLGVGQNITLAVLDNYSKLTRIDAEAELGSIDKE-IARMHLKTASPFLPITSLSGGNQQ 414 Query: 419 KVVLAKWLATNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLS 478 K VLAK L T +LI DEPTRG+DVGAK EI++++ LAA+G ++IM+SSEL E+L +S Sbjct: 415 KAVLAKMLLTKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVS 474 Query: 479 DRIVVMWEGEITAVLDNREKRVTQEEIM 506 DR++V+ +G++ N E +TQE+++ Sbjct: 475 DRVLVIGDGQLRGDFINHE--LTQEQVL 500 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 705 Number of extensions: 43 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 518 Length adjustment: 35 Effective length of query: 485 Effective length of database: 483 Effective search space: 234255 Effective search space used: 234255 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory