GapMind for catabolism of small carbon sources

 

Alignments for a candidate for pcaK in Pseudomonas fluorescens FW300-N2E2

Align 4-hydroxybenzoate transporter PcaK (characterized)
to candidate Pf6N2E2_739 Putative hydroxycinnamate transporter

Query= SwissProt::Q51955
         (448 letters)



>FitnessBrowser__pseudo6_N2E2:Pf6N2E2_739
          Length = 407

 Score =  229 bits (585), Expect = 9e-65
 Identities = 147/417 (35%), Positives = 217/417 (52%), Gaps = 49/417 (11%)

Query: 31  VLLCFLIVFLDGLDTAAMGFIAPALSQEWGIDRASLGPVMSAALIGMVFGALGSGPLADR 90
           + LCF++  ++G D  + G  A  L Q + +D   +G V SA +IG++ GA   G +ADR
Sbjct: 12  IALCFIVALIEGFDLQSAGTAAAGLRQTFALDPKMMGWVFSAGIIGLLPGAFFGGWIADR 71

Query: 91  FGRKGVLVGAVLVFGGFSLASAYATNVDQLLVLRFLTGLGLGAGMPNATTLLSEYTPERL 150
            GRK +L+ AVL+FG FSL++AY  +   LL++RF+TGLGLGA +PN   L +E   E+ 
Sbjct: 72  IGRKKILIAAVLLFGVFSLSTAYVEHFSSLLLVRFMTGLGLGAALPNLIALCAEAVGEQR 131

Query: 151 KSLLVTSMFCGFNLGMAGGGFISAKMIPAYG--WHSLLVIGGVLPLLLALVLMVWLPESA 208
           +   ++ M+ G  L    GG ++A +   +G  W     IGG+ PLL+  ++++WLPES+
Sbjct: 132 RGTAISVMYAGVPL----GGALAAVVAMLFGEHWQMTFFIGGLAPLLVVPLMLLWLPESS 187

Query: 209 RFLVVRNRGTDKIRKTLSPIAPQVVAEAGSFSVPEQKAVAARSVFAVIFSGTYGLGTMLL 268
            F   ++ GT                             A  S    +F    G  T+ L
Sbjct: 188 AFRQAQDGGT-----------------------------ARGSTTQALFGEGRGRTTLAL 218

Query: 269 WLTYFMGLVIVYLLTSWLPTLMRDSGASMEQAAFIGALFQFGGVLSAVGVGWAMDRYNPH 328
           WL+YF  L ++Y+L +WLP+L+ + G S  QA  +  LF  GG L ++  G  +DR N  
Sbjct: 219 WLSYFFTLTVMYMLLNWLPSLLLEQGFSKPQAGLVQMLFNIGGALGSLLGGLLLDRCNGI 278

Query: 329 KVI-----GIFYLLAGVFAYAVGQSLGNITVLATLVLIAGMCVNGAQSAMPSLAARFYPT 383
           KV+     G+   LAGV  ++VG     I  +A     AG+ V  AQ  + +LA   YPT
Sbjct: 279 KVVLFVYAGLLSALAGV-GFSVG-----IVPMAIAGFAAGLFVMAAQLVLYALAPPSYPT 332

Query: 384 QGRATGVSWMLGIGRFGAILGAWSGATLLGLGWNFEQVLTAL---LVPAALATVGVI 437
             RATGV   + IGR G++ G  +   +L  G     VL A    LV A LA + VI
Sbjct: 333 SVRATGVGAAVAIGRLGSVAGPLAAGQILAAGGGTTAVLLATSPGLVVATLAVLSVI 389


Lambda     K      H
   0.325    0.140    0.424 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 516
Number of extensions: 34
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 448
Length of database: 407
Length adjustment: 32
Effective length of query: 416
Effective length of database: 375
Effective search space:   156000
Effective search space used:   156000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory