Align TRAP transporter (characterized, see rationale)
to candidate Pf6N2E2_320 TRAP transporter, 4TM/12TM fusion protein, unknown substrate 1
Query= uniprot:A8LI82 (743 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_320 Length = 675 Score = 338 bits (867), Expect = 5e-97 Identities = 200/526 (38%), Positives = 289/526 (54%), Gaps = 60/526 (11%) Query: 187 VLAICGVAVATYLITIYGTLMRNSTGTPFAPIGISIAAVAGTALIMELTRRVAGMALIVI 246 VL++ GVA A Y L++ S + + I V L+ E RRV G+AL +I Sbjct: 75 VLSLGGVATALYQWVFESDLIQRSGDLTTTDMIMGIVLVV---LVFEAARRVMGIALPII 131 Query: 247 AGIFLAYVFVGQYLPGFLNAPAVTWQRFFSQV-YTDAGILGPTTAVSSTYIILFIIFAAF 305 G+FLAY G+YLPG L + +Q+ + G+ G T VS+TYI LFI+F AF Sbjct: 132 CGLFLAYGLFGEYLPGDLAHRGYGLDQIINQLSFGTEGLYGTPTYVSATYIFLFILFGAF 191 Query: 306 LQASKVGDYFVNFAFAAAGQSRGGPAKVAIFASGLMGMINGTSAGNVVATGSLTIPLMKK 365 L+ + + F +FA G GGPAKVA+ +S LMG I G+ NVV TG TIPLMK+ Sbjct: 192 LEKAGMIKLFTDFAMGLFGHKLGGPAKVAVVSSALMGTITGSGIANVVTTGQFTIPLMKR 251 Query: 366 VGYHKKTAGAVEAAASTGGQIMPPIMGAGAFIMAEITGIPYTEIALAAIIPAILYFVSVY 425 GY AG VEA +S G QIMPP+MGA AFIMAE +P+ EIA AA+IPA LYF SV+ Sbjct: 252 FGYKAAFAGGVEATSSMGSQIMPPVMGAVAFIMAETINVPFVEIAKAALIPACLYFGSVF 311 Query: 426 FMVDLEAAKLGMRGMSRDELPKFNKMVRQV-YLFLPIIILIYALFMGYSVIRAGTLATVA 484 +MV LEA + ++G+ +D+ P V+ +L +P+ +L+Y LF G + + +G + Sbjct: 312 WMVHLEAKRSDLKGLPKDQCPSAWGAVKDSWFLLIPLGVLVYLLFSGRTPLFSGMVGLAL 371 Query: 485 AAVV------------------SWFTP-------FRMGPRSIAKAFEIAGTM-------- 511 A+V W FR+G I F + G + Sbjct: 372 TAIVILGSAIILKVSNYALRCAFWIALGLLCVGFFRLG---IGVVFAVIGVLVVACWFMQ 428 Query: 512 -------------------SVQIIAVCACAGIIVGVISLTGVGARFSAVLLGIADTSQLL 552 +V + CA G I+ V+SLTGV + F+ +L I + LL Sbjct: 429 GTRETLVICLHALVDGARHAVPVGIACALVGSIIAVVSLTGVASTFAGYILAIGRDNLLL 488 Query: 553 ALFFAMCIAILLGMGMPTTAAYAVAASVVAPGLVQLGIPLLTAHFFVFYFAVLSAITPPV 612 +L M ++LGMG+PT Y + +S+ AP L++LG+PL+ +H FVFYF +L+ +TPPV Sbjct: 489 SLILTMLTCLVLGMGIPTIPNYIITSSIAAPALLELGVPLIVSHMFVFYFGILADLTPPV 548 Query: 613 ALASYAAAGISGANPMETSVTSFKIGIAAFIVPFMFFYNSAILMDG 658 ALA +AAA I+ + ++ S + +I +A F++PFM YN A+++ G Sbjct: 549 ALACFAAAPIARESGLKISFWAVRIALAGFVIPFMTVYNPALMLQG 594 Lambda K H 0.327 0.140 0.419 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1252 Number of extensions: 82 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 743 Length of database: 675 Length adjustment: 39 Effective length of query: 704 Effective length of database: 636 Effective search space: 447744 Effective search space used: 447744 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory