Align lactaldehyde dehydrogenase (EC 1.2.1.22); D-glyceraldehyde dehydrogenase (NADP+) (EC 1.2.1.89) (characterized)
to candidate Pf6N2E2_1102 Aldehyde dehydrogenase A (EC 1.2.1.22)
Query= BRENDA::P25553 (479 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1102 Length = 477 Score = 563 bits (1450), Expect = e-165 Identities = 292/479 (60%), Positives = 354/479 (73%), Gaps = 5/479 (1%) Query: 2 SVPVQHPMYIDGQFVTWRGDAWIDVVNPATEAVISRIPDGQAEDARKAIDAAERAQPEWE 61 SVPV +I+GQF +A +DV NPAT A++SR P A D +A+ AA AQ W Sbjct: 3 SVPV-FQNFINGQFT--HSEAHLDVYNPATGALLSRGPASTAADVDQALAAARAAQKAWS 59 Query: 62 ALPAIERASWLRKISAGIRERASEISALIVEEGGKIQQLAEVEVAFTADYIDYMAEWARR 121 A PAIERA +LR+I+ +RE + ++ I E GK LA VEV FTADY+DYMAEWARR Sbjct: 60 AKPAIERAGYLRRIAGKLRENVAHLARTITLEQGKTSALAAVEVNFTADYLDYMAEWARR 119 Query: 122 YEGEIIQSDRPGENILLFKRALGVTTGILPWNFPFFLIARKMAPALLTGNTIVIKPSEFT 181 EGEII SDRPGENI LF++ LGV GILPWNFPFFLIARKMAPALLTGNTIVIKPSE T Sbjct: 120 IEGEIITSDRPGENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVIKPSEET 179 Query: 182 PNNAIAFAKIVDEIGLPRGVFNLVLGRGETVGQELAGNPKVAMVSMTGSVSAGEKIMATA 241 PNN FA++V E LP GVFN+V G G+ VG L+G+ V M+S TGSV G +IM + Sbjct: 180 PNNCFEFARLVAETDLPPGVFNVVCGDGQ-VGAALSGHKGVDMISFTGSVDTGSRIMTAS 238 Query: 242 AKNITKVCLELGGKAPAIVMDDADLELAVKAIVDSRVINSGQVCNCAERVYVQKGIYDQF 301 A NITK+ LELGGKAPAIV+ DADL LAVKAI DSR+IN+GQVCNCAERVYV++ + DQF Sbjct: 239 APNITKLNLELGGKAPAIVLADADLALAVKAIRDSRIINTGQVCNCAERVYVERKVADQF 298 Query: 302 VNRLGEAMQAVQFGNPAERNDIAMGPLINAAALERVEQKVARAVEEGARVAFGGKAVE-G 360 + R+ AM A ++G+P DI MGPLIN L+ VE+KV A+++GA + GG+ + Sbjct: 299 IERISAAMSATRYGDPLAEPDIEMGPLINRHGLDSVERKVRTALQQGASLISGGRVADRP 358 Query: 361 KGYYYPPTLLLDVRQEMSIMHEETFGPVLPVVAFDTLEDAISMANDSDYGLTSSIYTQNL 420 G+++ PT+L M IM EE FGPVLP+ D L++AI++AND DYGLTSSIYT++L Sbjct: 359 DGFHFQPTVLAGCNASMQIMREEIFGPVLPIQIIDDLDEAIALANDCDYGLTSSIYTRDL 418 Query: 421 NVAMKAIKGLKFGETYINRENFEAMQGFHAGWRKSGIGGADGKHGLHEYLQTQVVYLQS 479 AM AI+GL FGETY+NRENFEAMQGFHAG RKSG+GGADGKHGL+EY T VYLQS Sbjct: 419 GRAMHAIRGLDFGETYVNRENFEAMQGFHAGVRKSGVGGADGKHGLYEYTHTHAVYLQS 477 Lambda K H 0.318 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 637 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 477 Length adjustment: 34 Effective length of query: 445 Effective length of database: 443 Effective search space: 197135 Effective search space used: 197135 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory