Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate Pf6N2E2_1919 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1919 Length = 490 Score = 411 bits (1056), Expect = e-119 Identities = 219/477 (45%), Positives = 299/477 (62%), Gaps = 4/477 (0%) Query: 1 MANVTYTDTQLLIDGEWV-DAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGF 59 +A+ + L IDGEW+ D S +V++P+T + V A ADL R LAAA+ GF Sbjct: 10 IADADHPRVGLFIDGEWIFDRPS--CFEVLDPSTEASLTSVPGATTADLKRVLAAAERGF 67 Query: 60 EAWRKVPAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFAD 119 + WR P ER + +A A VR R++ IAQ++T+E GK + +AR EV +A +W Sbjct: 68 KIWRDTPPAERNIIISRAIAGVRSRSEEIAQIITRENGKLIADARAEVERSASFFDWDMA 127 Query: 120 EGRRVYGRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKA 179 + R YG IVP Q++++++P+GPVAAFTPWN P++ RK+S AL GCS ++KA Sbjct: 128 QALRAYGTIVPGE-AQMQKSILRQPIGPVAAFTPWNVPLSAPSRKISGALCAGCSIILKA 186 Query: 180 PEETPASPAALLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQL 239 PEETP + A+++ F AG+P GV+ LV+G+PA +SS LI PV R VT TGS VGK L Sbjct: 187 PEETPGAAVAMVQCFERAGLPKGVLNLVFGNPALVSSTLIESPVTRMVTLTGSVAVGKHL 246 Query: 240 ASLAGLHMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSI 299 + LAG MK MELGGHAPVIV E + A K A +K R Q C +P RFLVH SI Sbjct: 247 SQLAGAAMKPVLMELGGHAPVIVCEGVNAAEIGKMALKSKIRINAQWCAAPGRFLVHESI 306 Query: 300 RDEFTRALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERI 359 DEF A V A+ ++V +G++ +G + + RRL AM +D+A G + GG R+ Sbjct: 307 YDEFVAAFVATADQVRVADGMDTKADIGPVTSVRRLAAMQHFVDDALARGGKVAVGGHRV 366 Query: 360 GSEGNFFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTR 419 G G +FAPT++ + PLD + +EPFGPVA F L+EAI +N L GLA +AFT Sbjct: 367 GERGYYFAPTLLVDTPLDCAIMTDEPFGPVAVAVRFSTLDEAIEISNSLSVGLAAFAFTN 426 Query: 420 SFANVHLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSV 476 S L++ L+VG+L IN P P+ PFGGVKDSG G EGGP +L+ Y+V+K+V Sbjct: 427 SLEQAERLSRELDVGVLSINHFGAPDPDTPFGGVKDSGIGREGGPWSLDSYMVSKTV 483 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 597 Number of extensions: 31 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 490 Length adjustment: 34 Effective length of query: 447 Effective length of database: 456 Effective search space: 203832 Effective search space used: 203832 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory