GapMind for catabolism of small carbon sources

 

Aligments for a candidate for xylGsa in Pseudomonas fluorescens FW300-N2E2

Align Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale)
to candidate Pf6N2E2_523 Inositol transport system ATP-binding protein

Query= uniprot:P0DTT6
         (251 letters)



>FitnessBrowser__pseudo6_N2E2:Pf6N2E2_523
          Length = 517

 Score =  157 bits (398), Expect = 3e-43
 Identities = 87/243 (35%), Positives = 149/243 (61%), Gaps = 2/243 (0%)

Query: 4   LLEIRDVHKSFGAVKALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVF 63
           LLE+ +V K F  V AL  V + +  G V+AL+G+NGAGKSTL+KII+G ++PD G+L  
Sbjct: 26  LLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRL 85

Query: 64  EGKKVIFNSPNDARSLGIETIYQDLALIPDLPIYYNIFLAREVTNKI-FLNKKKMMEESK 122
            GK V F++P  A   GI  I+Q+L L+P + I  NI++ RE  N +  ++  +M   + 
Sbjct: 86  RGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGLHMVDHGEMHRCTA 145

Query: 123 KLLDSLQIRIPDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLE 182
           +LL+ L+I++ D   +V NLS  +RQ V +A+AV + + +++MDEPT+A++  E   +  
Sbjct: 146 RLLERLRIKL-DPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAHLFS 204

Query: 183 LARNLKKKGLGVLIITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEVMTSFAL 242
           +  +LK +G G++ ITH + + + +AD + V   G  I  ++ +  + + +  +M    L
Sbjct: 205 IIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGREL 264

Query: 243 GKV 245
            ++
Sbjct: 265 SQL 267



 Score = 88.2 bits (217), Expect = 3e-22
 Identities = 49/225 (21%), Positives = 114/225 (50%), Gaps = 5/225 (2%)

Query: 22  GVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVFEGKKVIFNSPNDARSLGI 81
           GVS +++ GE++ + G  G+G++ + + I G      G+++ +G+ V  + P+ A   G 
Sbjct: 293 GVSFDLHAGEILGIAGLMGSGRTNVAEAIFGVTPSTGGEILLDGQPVRISDPHMAIEKGF 352

Query: 82  ETIYQDL---ALIPDLPIYYNIFLA--REVTNKIFLNKKKMMEESKKLLDSLQIRIPDIN 136
             + +D     L P L +  N+ +A         F+ +K +    + +   L+++ P + 
Sbjct: 353 ALLTEDRKLSGLFPCLSVLENMEMAVLPHYVGNGFIQQKALRALCEDMCKKLRVKTPSLE 412

Query: 137 MKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELARNLKKKGLGVLI 196
             ++ LSGG +Q   +AR +  + +++++DEPT  + V    ++  L   L  +G+ V++
Sbjct: 413 QCIDTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIM 472

Query: 197 ITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEVMTSFA 241
           I+  + +   ++DR+ V+  G ++    + E   E + ++ +  +
Sbjct: 473 ISSELPEVLGMSDRVMVMHEGDLMGTLNRGEATQERVMQLASGLS 517


Lambda     K      H
   0.318    0.137    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 258
Number of extensions: 12
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 2
Length of query: 251
Length of database: 517
Length adjustment: 29
Effective length of query: 222
Effective length of database: 488
Effective search space:   108336
Effective search space used:   108336
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 49 (23.5 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory