Align Probable 2-ketoarginine decarboxylase AruI; 2-oxo-5-guanidinopentanoate decarboxylase; 5-guanidino-2-oxopentanoate decarboxylase; EC 4.1.1.75 (characterized)
to candidate Pf6N2E2_5475 Acetolactate synthase, large subunit (EC 2.2.1.6)
Query= SwissProt::Q9HUI8 (559 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_5475 Length = 545 Score = 446 bits (1146), Expect = e-129 Identities = 263/539 (48%), Positives = 333/539 (61%), Gaps = 17/539 (3%) Query: 31 TAGQALVRLLANYGVDTVFGIPGVHTLELYRGLPGSGIRHVLTRHEQGAGFMADGYARVS 90 T G+ LV+LL YGV+ VFGIPGVHT+ELYRGL S IRHV RHEQGAGFMADGYARVS Sbjct: 3 TCGEVLVKLLHAYGVEQVFGIPGVHTVELYRGLARSNIRHVTPRHEQGAGFMADGYARVS 62 Query: 91 GKPGVCFVITGPGVTNVATAIGQAYADSVPLLVISSVNHSASLGKGWGCLHETQDQRAMT 150 GKPGVCF+ITGPG+TN+ TA+GQAYADS+P+LVISSV LG G G LHE +Q A+ Sbjct: 63 GKPGVCFIITGPGMTNITTAMGQAYADSIPMLVISSVQSRNQLGGGRGKLHELPNQAALV 122 Query: 151 APITAFSALALSPEQLPELIARAYAVFDSERPRPVHISIPLDVLAAPVAHDWSAAVARRP 210 + AFS +S +LP ++ARA+AVF + RPRPVHI IPLDVL A A+V Sbjct: 123 GGVAAFSHTLMSAAELPGVLARAFAVFQAGRPRPVHIEIPLDVLVED-ADALLASVPVNI 181 Query: 211 GRGVPCSEALRAAAERLAAARRPMLIAGGGALAAGEALAALSERLAAPLFTSVAGKGLLP 270 R A+ A +LA+A+RP+++AGGGA+ A L L+ERL AP+ ++ KGLLP Sbjct: 182 NRAGAAPSAVAQMAAKLASAQRPLILAGGGAIDAAAELTELAERLGAPVALTINAKGLLP 241 Query: 271 PDAPLNAGASLCVAPGWEMIAEADLVLAVGTEMADTDF---WRERLPLSGELIRVDIDPR 327 PL G++ + ++AEAD+VLA+GTE+A+TD+ + + G L+R+DIDP Sbjct: 242 SRHPLLIGSTQSLVATRALVAEADVVLAIGTELAETDYDITFAGGFEIPGALLRIDIDPD 301 Query: 328 KFNDFYPSAVALRGDARQTLEALLVRLPQ----EARDSAPAAARVARLRAEIRAAHAPLQ 383 + YP +AL DAR A+L L Q E RD R ARLRAE++ + Sbjct: 302 QTVRNYPPYLALVADARVATRAVLDALSQHPLAERRDDW-GTTRAARLRAELQGSWDAAT 360 Query: 384 ALHQAILDRIAAALPADAFVSTDMTQLAYTGNYAFASRAPRSWLH-PTGYGTLGYGLPAG 442 LD + ALP FV D TQ YTGN F PR W + TGYGTLGY LPA Sbjct: 361 RAQTLFLDTVLQALPEAVFVG-DSTQPVYTGNLTFNPEQPRRWFNSSTGYGTLGYALPAA 419 Query: 443 IGAKLGAPQ----RPGLV-LVGDGGFLYTAQELATASEELDSPLVVLLWNNDALGQIRDD 497 IGA LG RP +V L+GDGG +T ELA+A E +P++VLLWNN +I+ Sbjct: 420 IGAWLGGKDRGHGRPAVVCLIGDGGLQFTLPELASA-VEARTPVIVLLWNNQGYEEIKKY 478 Query: 498 MLGLDIEPVGVLPRNPDFALLGRAYGCAVRQPQDLDELERDLRAGFGQSGVTLIELRHA 556 M+ IEPVGV PDF + RA GCA + + +L L A + G TLIE+ A Sbjct: 479 MVNRAIEPVGVDIYTPDFIGVARALGCAAQAIDGVAQLHAALLAACDRQGPTLIEIDQA 537 Lambda K H 0.321 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 821 Number of extensions: 33 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 545 Length adjustment: 36 Effective length of query: 523 Effective length of database: 509 Effective search space: 266207 Effective search space used: 266207 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory