Align TctA, component of The tricarboxylate transporter, TctABC (characterized)
to candidate Pf6N2E2_2770 Tricarboxylate transport membrane protein TctA
Query= TCDB::Q9FA44 (504 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_2770 Length = 504 Score = 672 bits (1734), Expect = 0.0 Identities = 322/496 (64%), Positives = 409/496 (82%), Gaps = 1/496 (0%) Query: 1 MDTWIYLSQGFAVAMTPENLVIALIGCFVGTIVGLLPGLGPINGVAILLPLAFALHLPAE 60 MDT YL QGF VA+TP NLV AL G +GT+VGLLPGLGPINGVA+L+P+AFAL LP E Sbjct: 1 MDTLNYLGQGFGVALTPYNLVTALTGTLIGTVVGLLPGLGPINGVALLIPIAFALGLPPE 60 Query: 61 SALILLATVYIGCEYGGRISSILLNVPGDAAAIMTALDGYPMAQQGKGGVALSISAVSSF 120 SALILLA VY+GCEYGGRISSILLN+PG+A+ +MT LDGYPMA+QG GVALS+SA SSF Sbjct: 61 SALILLAAVYLGCEYGGRISSILLNIPGEASTVMTTLDGYPMARQGLAGVALSLSAWSSF 120 Query: 121 FGSLIAIGGIILFAPLLAQWSLAFGPAEYFALMVFAIACLGSMMAQNPLKSFLAALIGLG 180 G+ IA G++LFAPLLA+W++AFGPAEYF LMVFAI CLG M PLK+F+AALIGL Sbjct: 121 IGAFIATCGMVLFAPLLAKWAIAFGPAEYFVLMVFAIVCLGGMAGDRPLKTFIAALIGLF 180 Query: 181 LATVGVDANTGVYRFTFDSVHLSDGVQFIVVVIGLFSVSEILLMLEHTSSGQTMVRKTGR 240 L++VG+DAN+GVYRFT D++HL+DG+QF+V+V+GLFS+SEILL+LE T GQ V+ TGR Sbjct: 181 LSSVGIDANSGVYRFTGDNIHLTDGIQFVVLVLGLFSISEILLLLEKTHRGQEAVKATGR 240 Query: 241 MLFNLKEGAQCIGTTLRSSVIGFFVGVLPGAGATIASAITYMTEKKLSGNSDSFGKGDIR 300 M+FN KE A LR V+GF +GVLPGAGAT+ASA+ YMTEK+++G SFG+GD R Sbjct: 241 MMFNFKEAASVFTVNLRCGVLGFIMGVLPGAGATLASAVAYMTEKRIAGAGGSFGQGDKR 300 Query: 301 GVAAPEAANNASACGSFIPMLTLGVPGSGTTAVMMGALTLYNITPGPAMFTEQPDIVWGL 360 G+AAPE A +ACG+ +PMLTLGVPGSGTTAVM+GAL+LYNITPGP +F +QPDIVWGL Sbjct: 301 GLAAPETAIGGAACGALVPMLTLGVPGSGTTAVMIGALSLYNITPGPLLFQQQPDIVWGL 360 Query: 361 IAALLIANVMLLIMNIPLIGLFTRMLTIPLWFVVPAIAAVSAVGVYAVHSTTFDLVLMVA 420 IA+L +AN+ML+I+NIP+I +FTR+L +P W +VP IA ++ +GVYAVH+TTFDL LM+ Sbjct: 361 IASLFVANIMLVILNIPMIRIFTRILAVPNWALVPVIAIITGIGVYAVHATTFDLFLMIG 420 Query: 421 LGVLGYILRKMHFPMSPLILGFVLGEMLEQNLRRALSISNGNMAILWQSGVAKALLIMAI 480 +G+ GYILRK+ FP+SP++LGF+LG ++EQNLRRALSISNG + ILW S + I+ Sbjct: 421 IGIFGYILRKLDFPLSPVLLGFILGGLMEQNLRRALSISNGALEILWSSPITFGCWILTA 480 Query: 481 MVIVVPPVLRLLRKHS 496 +++ + P+LR+ R+ + Sbjct: 481 IMLFM-PLLRIWRRRA 495 Lambda K H 0.326 0.141 0.414 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 941 Number of extensions: 44 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 504 Length adjustment: 34 Effective length of query: 470 Effective length of database: 470 Effective search space: 220900 Effective search space used: 220900 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory