Align 1-pyrroline-5-carboxylate dehydrogenase 2; P5C dehydrogenase 2; L-glutamate gamma-semialdehyde dehydrogenase; EC 1.2.1.88 (characterized)
to candidate Pf6N2E2_3298 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26)
Query= SwissProt::P94391 (515 letters) >lcl|FitnessBrowser__pseudo6_N2E2:Pf6N2E2_3298 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26) Length = 481 Score = 267 bits (682), Expect = 7e-76 Identities = 164/472 (34%), Positives = 244/472 (51%), Gaps = 20/472 (4%) Query: 35 KDYPLVINGERVETEAKIVSINPADKEEVVGRVSKASQEHAEQAIQAAAKAFEEWRYTSP 94 K + ING+ V +INP+D +V+G +KA AI+AA AF W + Sbjct: 5 KRFDNYINGQWVAGADYCTNINPSDLSDVIGEYAKADAAQVNAAIEAARAAFPAWSTSGI 64 Query: 95 EERAAVLFRAAAKVRRRKHEFSALLVKEAGKPWNEADADTAEAIDFMEYYARQMIELAKG 154 + R L + +++ R+ E LL +E GK EA + A + +++A + + L+ Sbjct: 65 QARHDALDKVGSEILARREELGQLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLRLSGD 124 Query: 155 KPVNSREGEKNQYVYTPTGVTVVIPPWNFLFAIMAGTTVAPIVTGNTVVLKPASATPVIA 214 + R G + GV +I PWNF AI A + GN VV+KPA P A Sbjct: 125 YVPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVIKPAELVPGCA 184 Query: 215 AKFVEVLEESGLPKGVVNFVPGSGAEVGDYLVDHPKTSLITFTGS----REVGTRIFERA 270 E++ +G P G N V GSG VGD LV+ PK I+FTGS R++ R Sbjct: 185 WALAEIISRAGFPAGAFNLVMGSGRVVGDILVNSPKVDGISFTGSVGVGRQIAVNCVSRQ 244 Query: 271 AKVQPGQQHLKRVIAEMGGKDTVVVDEDADIELAAQSIFTSAFGFAGQKCSAGSRAVVHE 330 AKVQ EMGGK+ ++ +DAD++ A + SAF GQ+C+A SR +V Sbjct: 245 AKVQ----------LEMGGKNPQIILDDADLKQAVELAVQSAFYSTGQRCTASSRLIVTA 294 Query: 331 KVYDQVLERVIEITESKVTAKPDSADVYMGPVIDQGSYDKIMSYIEIGKQEG-RLVSGG- 388 ++D+ + + E +S A +GPV+ + + + YI+IG+ EG RLVSGG Sbjct: 295 GIHDKFVAAMAERMQSIKVGHALKAGTDIGPVVSEAQLSQDLKYIDIGQSEGARLVSGGG 354 Query: 389 -TGDDSKGYFIKPTIFADLDPKARLMQEEIFGPVVAFCKVSDFDEALEVANNTEYGLTGA 447 D++GYF+ PT+FAD + R+ +EEIFGPV +V+D++ AL +AN+TE+GL+ Sbjct: 355 LVTCDTEGYFLAPTLFADSEASMRISREEIFGPVANVVRVADYEAALAMANDTEFGLSAG 414 Query: 448 VITNNRKHIERAKQEFHVGNLYFNRNCTGAIVGYH-PFGGFKMSGTDSKAGG 498 + T + K+ K+ G + N G V YH PFGG K S S+ G Sbjct: 415 IATTSLKYANHFKRHSQAGMVMVNLPTAG--VDYHVPFGGRKGSSYGSREQG 464 Lambda K H 0.316 0.133 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 575 Number of extensions: 23 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 481 Length adjustment: 34 Effective length of query: 481 Effective length of database: 447 Effective search space: 215007 Effective search space used: 215007 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory