Align Purine/cytidine ABC transporter ATP-binding protein, component of General nucleoside uptake porter, NupABC/BmpA (transports all common nucleosides as well as 5-fluorocytidine, inosine, deoxyuridine and xanthosine) (Martinussen et al., 2010) (Most similar to 3.A.1.2.12). NupA is 506aas with two ABC (C) domains. NupB has 8 predicted TMSs, NupC has 9 or 10 predicted TMSs in a 4 + 1 (or 2) + 4 arrangement (characterized)
to candidate Pf6N2E2_523 Inositol transport system ATP-binding protein
Query= TCDB::A2RKA7 (506 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_523 Length = 517 Score = 308 bits (788), Expect = 4e-88 Identities = 173/497 (34%), Positives = 282/497 (56%), Gaps = 8/497 (1%) Query: 6 VIQMIDVTKRFGDFVANDKVNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHV 65 ++++++V+K F VA V L ++ G + AL+GENGAGKSTLM I++G+ +P GE+ + Sbjct: 26 LLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRL 85 Query: 66 KGKLENIDSPSKAANLGIGMVHQHFMLVDAFTVTENIILGNEVTKGINL-DLKTAKKKIL 124 +GK D+P A GI M+HQ L+ ++ ENI +G E G+++ D + Sbjct: 86 RGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGLHMVDHGEMHRCTA 145 Query: 125 ELSERYGLSVEPDALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQI 184 L ER + ++P+ + ++S+ ++Q VEI K + +DILI DEPT+ +T E+ L I Sbjct: 146 RLLERLRIKLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAHLFSI 205 Query: 185 MKNLIKEGKSIILITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGRSVS 244 + +L +GK II ITHK++E+ A+AD + V R G I L +MVGR +S Sbjct: 206 IADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGRELS 265 Query: 245 FITEKAAAQPKDVVLEIKDLNIKESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELVKA 304 + D+VL ++DL++ KG+S D+ AGEI+G+AG+ G+G+T + +A Sbjct: 266 QLFPVREQPIGDLVLSVRDLSLDGI-----FKGVSFDLHAGEILGIAGLMGSGRTNVAEA 320 Query: 305 ITGLTKVDSGSIKLHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQTYY 364 I G+T G I L + + P E+ + EDR GL ++V EN+ + Sbjct: 321 IFGVTPSTGGEILLDGQPVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAVL- 379 Query: 365 KPPMSKYGFLDYNKINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNPDL 424 P GF+ + + ++ ++ V+ +LSGGNQQKA++AR + NP + Sbjct: 380 -PHYVGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRI 438 Query: 425 LIVSQPTRGLDVGAIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQGI 484 LI+ +PTRG+DVGA I++ + EG AV++IS EL E+L +SDR+ V+H+G + G Sbjct: 439 LILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGDLMGT 498 Query: 485 VSPETTTKQELGILMVG 501 ++ T++ + L G Sbjct: 499 LNRGEATQERVMQLASG 515 Score = 90.9 bits (224), Expect = 1e-22 Identities = 55/249 (22%), Positives = 129/249 (51%), Gaps = 8/249 (3%) Query: 258 VLEIKDLNIKESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELVKAITGLTKVDSGSIK 317 +LE+ +++ K G + + + L VR G ++ + G +G G++ L+K I G+ + D+G ++ Sbjct: 26 LLEVVNVS-KGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELR 84 Query: 318 LHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQTYYKPPMSKYGFLDYN 377 L K +T P + + + ++ + L+ M++AENI + + ++ +D+ Sbjct: 85 LRGKPVTFDTPLAALQAGIAMIHQELN---LMPHMSIAENIWIG---REQLNGLHMVDHG 138 Query: 378 KINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNPDLLIVSQPTRGLDVG 437 +++ L+E ++ E +LS +Q IA+ + + D+LI+ +PT + Sbjct: 139 EMHRCTARLLERLRIKLDPE-EQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITET 197 Query: 438 AIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQGIVSPETTTKQELGI 497 + ++ + + +GK ++ I+ +++E+ ++D +AV DG G+ ++ L Sbjct: 198 EVAHLFSIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLIS 257 Query: 498 LMVGGNINE 506 +MVG +++ Sbjct: 258 MMVGRELSQ 266 Score = 79.0 bits (193), Expect = 4e-19 Identities = 56/225 (24%), Positives = 109/225 (48%), Gaps = 8/225 (3%) Query: 25 VNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHVKGKLENIDSPSKAANLGIG 84 V+ +L GEI + G G+G++ + + G+ + GE+ + G+ I P A G Sbjct: 294 VSFDLHAGEILGIAGLMGSGRTNVAEAIFGVTPSTGGEILLDGQPVRISDPHMAIEKGFA 353 Query: 85 MVHQHFMLVDAF---TVTENI---ILGNEVTKGINLDLKTAKKKILELSERYGLSVEP-D 137 ++ + L F +V EN+ +L + V G + K + ++ ++ + + Sbjct: 354 LLTEDRKLSGLFPCLSVLENMEMAVLPHYVGNGF-IQQKALRALCEDMCKKLRVKTPSLE 412 Query: 138 ALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQIMKNLIKEGKSIIL 197 I +S G QQ+ + + L ILI DEPT + E+ +++ L EG ++I+ Sbjct: 413 QCIDTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIM 472 Query: 198 ITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGRS 242 I+ +L E+ ++DR+ V+ G + T+ G+ T + + +L G S Sbjct: 473 ISSELPEVLGMSDRVMVMHEGDLMGTLNRGEATQERVMQLASGLS 517 Lambda K H 0.315 0.135 0.365 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 579 Number of extensions: 18 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 506 Length of database: 517 Length adjustment: 35 Effective length of query: 471 Effective length of database: 482 Effective search space: 227022 Effective search space used: 227022 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory