Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate Pf6N2E2_368 Succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16)
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_368 Length = 485 Score = 494 bits (1272), Expect = e-144 Identities = 259/480 (53%), Positives = 331/480 (68%), Gaps = 7/480 (1%) Query: 46 LLRGDSFVGGRWL--PTPATFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWKEI 103 LL ++V G+W+ AT V DPA+G L V E R A+ AA A+ +W+ Sbjct: 11 LLAELAYVDGQWIGADNAATLDVIDPATGHSLARVPAMQGVETRRAIEAAERAWPAWRAR 70 Query: 104 SVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARRVY 163 ER++LL +WY M+ N D+LA I+T E GKPL EA+GEI Y A F +WF+EEARRVY Sbjct: 71 PAAERAALLERWYQAMMDNLDDLALIMTCEQGKPLSEAKGEIRYGAGFAKWFAEEARRVY 130 Query: 164 GDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTPY 223 G+ I + D+R L LKQPVGV + ITPWNFP+AMITRK ALAAGC V+VKP++ TP Sbjct: 131 GETIPAPSGDRRLLTLKQPVGVCAAITPWNFPNAMITRKCAPALAAGCPVIVKPSDLTPL 190 Query: 224 SALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILLHH 283 SALALA LA + GIP GV+NV+ +GE L +P V KISFTGSTA G++L+ Sbjct: 191 SALALAVLAERVGIPAGVFNVV---TGMPAGIGEELTGNPTVRKISFTGSTAVGRLLMRQ 247 Query: 284 AANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIHDS 343 +A +KR+S+ELGG APFIVFD A+++QAVAG M SKFRNAGQTCVC+NR LVQ GI++ Sbjct: 248 SAEHIKRLSLELGGNAPFIVFDDADLEQAVAGIMLSKFRNAGQTCVCANRILVQDGIYER 307 Query: 344 FVTKFAEAMKKSLRVGNGFEEGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKRHQS 403 F + E + K L+VGNG E G GPLIN AV KV +H++DA+++GA ++ GG + Sbjct: 308 FAARLVEEVGK-LKVGNGLEAGVMIGPLINLAAVNKVARHIDDALSQGARLLCGGV-PEG 365 Query: 404 GGNFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYFYSQDP 463 F +PT+L ML EETFGPVAP+++F EE+A+A+ANA GL Y+++QD Sbjct: 366 DSQFVQPTVLGEAHAGMLLANEETFGPVAPLMRFTTEEQALALANATPYGLGAYYFTQDL 425 Query: 464 AQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYVCYGGL 523 + WR E LE GMVG+N G+IS PFGG+KQSGLGREGSKYG+DEYLEVK GGL Sbjct: 426 RRSWRFGEALEFGMVGLNTGIISMEVAPFGGIKQSGLGREGSKYGLDEYLEVKAFHIGGL 485 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 609 Number of extensions: 14 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 485 Length adjustment: 34 Effective length of query: 489 Effective length of database: 451 Effective search space: 220539 Effective search space used: 220539 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory