Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate Pf6N2E2_2190 Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3)
Query= BRENDA::A4YDR9 (549 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_2190 Length = 565 Score = 176 bits (447), Expect = 2e-48 Identities = 153/539 (28%), Positives = 246/539 (45%), Gaps = 41/539 (7%) Query: 26 LFLERAGKYFKDKTAVVYRDS-RYTYSTFYDNVMVQASALMRRGFSREDKLSFISRNRPE 84 +F + +Y + + VV S RYT+ + V + A AL+ G D+L + N + Sbjct: 29 VFDQTMARYPEGEALVVRHQSLRYTWRQLAEAVDLHARALLALGLKTGDRLGVWAPNCAQ 88 Query: 85 FLESFFGVPYAGGVLVPINFRLSPKEMAYIINHSDSKFVVVDEPYLNSLLEVKDQIKAEI 144 + S F G +LV IN E+ Y++ S +++V + S Q A Sbjct: 89 WCISQFASAKLGVILVNINPAYRVSELEYVLKQSGCQWLVCAGAFKTSDYHAMLQTLAPE 148 Query: 145 ILLEDPDNPSASETARKEVR-------------MTYRELVKGGSRDPLPIPAKEEYSM-- 189 L E P SE E+R + + +L G+ A+ + S+ Sbjct: 149 -LAEQPIGQMQSERL-PELRGVISLDSQPPSGFLPWSQLAALGAAVTPGQLAERQSSLHF 206 Query: 190 ---ITLYYTSGTTGLPKGVMHHHRGAFLNAMAEVLEHQMDLNSVYLWTLPMFHAASWGF- 245 + + YTSGTTG PKG H N + + + +P++H Sbjct: 207 DQPVNIQYTSGTTGFPKGATLSHHNILNNGYMVGESLGLTADDRLVIPVPLYHCFGMVMG 266 Query: 246 SWATVAVGATNVCLDKVDYPLI-YRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNRV 304 + + G+T + + PL+ + V +E+ T + PT+++ L D +R + S+ Sbjct: 267 NLGCMTHGSTMIYPNDAFDPLLTLKAVAEEKATALYGVPTMFIALLDQPQRGDFDLSSLR 326 Query: 305 HMLVAGAA-PAPATLKAMQEIGGYMCHV---YGLTETYGPHSICEWRREWDSLPLEEQAK 360 ++AGA P + + E+ +M V YG+TET P S+ + P +E Sbjct: 327 TGIMAGATCPIEVMRRVINEM--HMAEVQIAYGMTET-SPVSL-------QTGPTDELEL 376 Query: 361 LKARQGIPYVSFEMDVFDANGKPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFR-DG 419 G E + DA G VP +GE+ RG++V LGY+ NP+ TA++ DG Sbjct: 377 RVTTVGRTQPQLESKIIDAAGNLVPRGA--VGELCTRGYSVMLGYWNNPKGTADAIDPDG 434 Query: 420 WFHSGDAAVVHPDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEK 479 W H+GD A + GY+ IV R KD+I GGE + +E+ P V V V G P + Sbjct: 435 WMHTGDLATMDEQGYVRIVGRNKDMIIRGGENIYPRELEEFFFTHPAVADVQVIGIPCSR 494 Query: 480 WGEVVTARIELQEGVKLTEEEVIKFCKERLAHFECPKIVEF-GPIPMTATGKMQKYVLR 537 +GE + A I+ G E+E+ +CKER+AHF+ P+ +F PMT TGK+QK+ +R Sbjct: 495 YGEEIVAWIKFHPGHSACEQELQAWCKERIAHFKTPRHFKFVEEFPMTVTGKIQKFRMR 553 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 686 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 549 Length of database: 565 Length adjustment: 36 Effective length of query: 513 Effective length of database: 529 Effective search space: 271377 Effective search space used: 271377 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory