Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate Pf6N2E2_523 Inositol transport system ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_523 Length = 517 Score = 400 bits (1027), Expect = e-116 Identities = 236/505 (46%), Positives = 324/505 (64%), Gaps = 17/505 (3%) Query: 13 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECH 72 LL + N+ K FPGV AL V+L G V ALMGENGAGKSTLMKI++G Y D GE Sbjct: 26 LLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPD-AGELR 84 Query: 73 IDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGL--VARGDMVRA 130 + G+ V D P +A G+A+I+QEL+L P++S+AENI++GR Q GL V G+M R Sbjct: 85 LRGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGRE-QLNGLHMVDHGEMHRC 143 Query: 131 CAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLF 190 A L RL P V +LSIA+RQ+VEIA+AV +++ IL+MDEPT+ ++ E LF Sbjct: 144 TARLLERLRIKLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAHLF 203 Query: 191 ALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRD 250 ++I L+ +G I+YI+H+M E+ +AD V V RDG ++G + +L+ MMVGR+ Sbjct: 204 SIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGRE 263 Query: 251 LSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRTELARLV 310 LS + Q + +++LSVRD++ KG SFDL AGE+LG+AGL+G+GRT +A + Sbjct: 264 LSQLFP-VREQPIG-DLVLSVRDLSLDGIFKGVSFDLHAGEILGIAGLMGSGRTNVAEAI 321 Query: 311 FGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHENI 370 FG T GE+ + G V + P AI+ G A LTEDRKL GLF SV EN+ Sbjct: 322 FGVTPSTGGEILL-----DGQPVRI--SDPHMAIEKGFALLTEDRKLSGLFPCLSVLENM 374 Query: 371 NLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSRLLE 430 + V +G G + + A R + L ++ + + LSGGNQQK +L+R L Sbjct: 375 EMAVLPH-YVGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLM 433 Query: 431 IQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVMREG 490 PR+LILDEPTRG+D+GAK+EIYRLI+ LA G+A++MISSELPEV+G+ DRV+VM EG Sbjct: 434 TNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEG 493 Query: 491 TLAGEVRPAGSAAETQERIIALATG 515 L G + G A TQER++ LA+G Sbjct: 494 DLMGTLN-RGEA--TQERVMQLASG 515 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 630 Number of extensions: 27 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 517 Length adjustment: 35 Effective length of query: 505 Effective length of database: 482 Effective search space: 243410 Effective search space used: 243410 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory