Align NAD+-dependent L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate Pf6N2E2_1751 Aldehyde dehydrogenase A (EC 1.2.1.22) / Glycolaldehyde dehydrogenase (EC 1.2.1.21)
Query= metacyc::MONOMER-16246 (477 letters) >lcl|FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1751 Aldehyde dehydrogenase A (EC 1.2.1.22) / Glycolaldehyde dehydrogenase (EC 1.2.1.21) Length = 477 Score = 724 bits (1869), Expect = 0.0 Identities = 363/473 (76%), Positives = 409/473 (86%), Gaps = 2/473 (0%) Query: 7 VHRNYIDGAFVESAAHLEVFNPANGALLSRVPAASAEEVERALAAARAAQKDWARKPAIE 66 +++NYI AFV S HLEV NPANG LL RVP S EVE+A+AAAR AQ+ WA +PAIE Sbjct: 5 IYQNYIANAFVASDEHLEVHNPANGQLLGRVPQGSTAEVEQAIAAARQAQRAWAARPAIE 64 Query: 67 RAGHLRRIAAKIRADAGRIARTITLEQGKIASLAEVEVNFTADYLDYMAEWARRLEGEII 126 RAG+LR+IA+K+R R+ARTIT EQGK+ LA VEVNFTADYLDYMAEWARRLEGE++ Sbjct: 65 RAGYLRKIASKVREHGERLARTITAEQGKVLELARVEVNFTADYLDYMAEWARRLEGEVL 124 Query: 127 ASDRPGENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVVKPSEETPNNCFE 186 +SDR GE+IFL RKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIV+KPSEETP NCFE Sbjct: 125 SSDRAGESIFLLRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVIKPSEETPINCFE 184 Query: 187 FARLVAETDLPRGVFNVVCGAG-QVGGALSSHPGVDLISFTGSVETGARIMAAAAPNLTK 245 FARLVAETDLP GVFNVVCG G VG ALS HPG+DLISFTGSV TG+RIMAAAAPN+TK Sbjct: 185 FARLVAETDLPAGVFNVVCGTGATVGHALSGHPGIDLISFTGSVGTGSRIMAAAAPNITK 244 Query: 246 LNLELGGKAPAIVLADADLELAVKAIRDSRIINSGQVCNCAERVYVQRQVAEPFIERIAA 305 LNLELGGKAPAIVLADADL+LA++AI SR+IN+GQVCNCAERVYV+R+VA+ FI+ IAA Sbjct: 245 LNLELGGKAPAIVLADADLDLAIRAITASRVINTGQVCNCAERVYVERKVADAFIDGIAA 304 Query: 306 AMAATRYGDPLAEPEVEMGPLINRLGLEKIDAKVRTALAQGATLVTGGAIAE-RPGHHYQ 364 +MAATRYGDPLAE ++MGPLINR L+K+ VRTA QGA ++TGGA+A+ G HYQ Sbjct: 305 SMAATRYGDPLAEHGLDMGPLINRAALDKVAQMVRTASGQGAQIITGGAVADLGQGFHYQ 364 Query: 365 PTVLTGCRADTRIMREEIFGPVLPIQIVDDLDEAIALANDCEYGLTSSVFTRDLNKAMHA 424 PTVL GC A IMR+EIFGPVLPIQIVDDLDEAIALAND EYGLTSS++T L+ AM A Sbjct: 365 PTVLAGCSAKMEIMRKEIFGPVLPIQIVDDLDEAIALANDSEYGLTSSIYTASLSAAMQA 424 Query: 425 LRELDFGETYINREHFEAMQGFHAGVRKSGIGGADGKHGLYEYTHTHVVYLQS 477 R LDFGETYINRE+FEAMQGFHAG RKSGIGGADGKHGLYEYTHTHVVY+Q+ Sbjct: 425 TRLLDFGETYINRENFEAMQGFHAGTRKSGIGGADGKHGLYEYTHTHVVYIQA 477 Lambda K H 0.320 0.136 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 727 Number of extensions: 16 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 477 Length adjustment: 33 Effective length of query: 444 Effective length of database: 444 Effective search space: 197136 Effective search space used: 197136 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory