Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate Pf6N2E2_2898 Phosphogluconate dehydratase (EC 4.2.1.12)
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_2898 Length = 608 Score = 196 bits (499), Expect = 2e-54 Identities = 158/517 (30%), Positives = 251/517 (48%), Gaps = 51/517 (9%) Query: 47 IGILNTWSDMTPCNGHLRELAEKVKAGVWE-------AGGFPLEVPVFSASENTFRPTAM 99 I I+++++DM + E++K + E AGG P + E ++ Sbjct: 68 IAIVSSYNDMLSAHQPYETFPEQIKKALREIGSVGQFAGGTPAMCDGVTQGEAGME-LSL 126 Query: 100 MYRNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCD-LPSIVVTGGPMLNGYF 158 R + AL+ A+ DG ++L CDK P L+MGA LP+I V GGPM++G Sbjct: 127 PSREVIALSTAVALSHNMFDGALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMVSGIS 186 Query: 159 RGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSSGTCNTMGTASTMASMAEALGM 218 E+ + G+ T+ E LE+E S GTC GTA+T + E +G+ Sbjct: 187 NKEKAD-------VRQRYAEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGL 239 Query: 219 ALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDD---LKPSEIMTKQAFENAIRTNAAIGG 275 L G + + R + + ++ +M K + EI+ +++ N+I A GG Sbjct: 240 HLPGASFVNPNTPLRDALTREAAFQVTRMTKQSGNFMPIGEIVDERSLVNSIVALHATGG 299 Query: 276 STNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLMEEFFYAGGLPVVLKR 335 STN +H+ AIA GI L+ D VPT+ ++ P+GK + F AGG+ +++ Sbjct: 300 STNHTLHMPAIAMAAGIQLTWQDMADLSEVVPTLSHVYPNGKADINHFQAAGGMSFLIRE 359 Query: 336 LGEAGLLHKDALTV---------------SGETVWDEVKDVVNWNEDVILPAEKALTSSG 380 L EAGLLH++ TV GE VW + + + +E+++ P +A + G Sbjct: 360 LLEAGLLHENVNTVLGHGLSRYTQEPFLEDGELVWRD-GPIESLDENILRPVARAFSPEG 418 Query: 381 GIVVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFED----IDDYKAKINDDNLDIDENC 436 G+ V+ GNL V+K SA + V + A+VF+D D +KA + ++++ Sbjct: 419 GLRVMEGNLG--RGVMKVSAVALENQVVEAPAMVFQDQQDLADAFKAGL------LEKDF 470 Query: 437 IMVMKNCGPKGYPGMAEVGNMGLPPKVLKKGILDMVRISDARMSGTAYGTV--VLHTSPE 494 + VM+ GP+ GM E+ M VL+ + ++D RMSG A G + +H SPE Sbjct: 471 VAVMRFQGPRS-NGMPELHKMTPFLGVLQDRGFKVALVTDGRMSG-ASGKIPAAIHVSPE 528 Query: 495 AAVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARR 531 A VGG LA V+ GD+I +D L L + EE A R Sbjct: 529 AYVGGALARVQEGDIIRVDGVKGTLELKVDAEEFAAR 565 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 781 Number of extensions: 44 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 608 Length adjustment: 37 Effective length of query: 542 Effective length of database: 571 Effective search space: 309482 Effective search space used: 309482 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory