Align Putative TRAP dicarboxylate transporter, DctM subunit (characterized, see rationale)
to candidate Pf6N2E2_485 TRAP-type C4-dicarboxylate transport system, large permease component
Query= uniprot:Q88NP0 (426 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_485 Length = 426 Score = 726 bits (1875), Expect = 0.0 Identities = 366/426 (85%), Positives = 402/426 (94%) Query: 1 MEAFILLGSFIVLILIGMPVAYALGLSALIGAWWIDIPLQAMMIQVASGVNKFSLLAIPF 60 M+A ILLGSF++LILIGMPVAYALG +ALIGAWWIDIP QAMMIQV GVNKFSLLAIPF Sbjct: 1 MDALILLGSFLLLILIGMPVAYALGAAALIGAWWIDIPFQAMMIQVTGGVNKFSLLAIPF 60 Query: 61 FVLAGAIMAEGGMSRRLVAFAGVLVGFVRGGLSLVNIMASTFFGAISGSSVADTASVGSV 120 FVLAGAIMAEGGMSRRLVAFA VLVGFVRGGLSLVN++AS+FFGAISGSSVADTASVGSV Sbjct: 61 FVLAGAIMAEGGMSRRLVAFASVLVGFVRGGLSLVNLVASSFFGAISGSSVADTASVGSV 120 Query: 121 LIPEMERKGYPREFSTAVTVSGSVQALLTPPSHNSVLYSLAAGGTVSIASLFMAGIMPGL 180 LIPEM R+GYPR+++TAVTVSGSVQALLTPPSHN+VLYSLAAGGTVSI SLFMAGI+PG+ Sbjct: 121 LIPEMTRRGYPRDYATAVTVSGSVQALLTPPSHNAVLYSLAAGGTVSIGSLFMAGIVPGI 180 Query: 181 LLSAVMMGLCLIFAKKRNYPKGEVIPLREALKIAGEALWGLMAMVIILGGILSGVFTATE 240 +++ +M LCL+FAKKRNYPKGEVIPL++ALKI EA+WG+M + IILGGILSGVFTATE Sbjct: 181 MMNLCLMALCLVFAKKRNYPKGEVIPLKQALKICREAMWGMMTLFIILGGILSGVFTATE 240 Query: 241 SAAVAVVWSFFVTMFIYRDYKWRDLPKLMHRTVRTISIVMILIGFAASFGYVMTLMQIPS 300 SAA+AVVW+FFVTM IYRDYKW +LPKLMHRTVRTISIVMILIGFAASFGY+MTLM+IP+ Sbjct: 241 SAAIAVVWAFFVTMCIYRDYKWSELPKLMHRTVRTISIVMILIGFAASFGYIMTLMEIPA 300 Query: 301 KITTAFLTLSDNRYVILMCINFMLMLLGTVMDMAPLILILTPILLPVITGIGVDPVHFGM 360 KITTAFLTLSDNRYVILMCIN ML+LLGTVMDMAPLILILTPIL+PVI GIGVDPV FGM Sbjct: 301 KITTAFLTLSDNRYVILMCINVMLLLLGTVMDMAPLILILTPILMPVIVGIGVDPVQFGM 360 Query: 361 IMLVNLGIGLITPPVGAVLFVGSAIGKVSIESTVKALMPFYLALFLVLMAVTYIPAISLW 420 IMLVNLGIGLITPPVGAVLFVGSAIGKVSIESTVKAL+PFY LF+VLM VTY+PAISLW Sbjct: 361 IMLVNLGIGLITPPVGAVLFVGSAIGKVSIESTVKALLPFYAMLFVVLMLVTYVPAISLW 420 Query: 421 LPSVVL 426 LP +VL Sbjct: 421 LPHLVL 426 Lambda K H 0.329 0.142 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 808 Number of extensions: 30 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 426 Length adjustment: 32 Effective length of query: 394 Effective length of database: 394 Effective search space: 155236 Effective search space used: 155236 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory