Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate Pf6N2E2_1850 Enoyl-CoA hydratase [isoleucine degradation] (EC 4.2.1.17) / 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) / 3-hydroxybutyryl-CoA epimerase (EC 5.1.2.3)
Query= BRENDA::A4YDS4 (651 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1850 Length = 715 Score = 194 bits (492), Expect = 2e-53 Identities = 130/398 (32%), Positives = 206/398 (51%), Gaps = 26/398 (6%) Query: 2 KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLKEG-V 60 K+ +IG+G+MG+GIA ++A G EV + D+S E ++ ++ LSK G L E Sbjct: 319 KLGIIGAGMMGNGIAHVSAKVGIEVMLLDVSLEAAERGKANVEKLLSKTVSQGRLSEAKK 378 Query: 61 EQVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPI 120 +++LA I P D A L+G DFV+EAV E ++LK + + AEA SAV TNTS+LPI Sbjct: 379 DEILALIKPTVDYAD-LQGVDFVVEAVFESVDLKGKVTQQAEAQLPESAVFGTNTSTLPI 437 Query: 121 SEIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKD 180 S +A+ K P +G+HFF+P MPLVEI+ G+ TSD + + A+ + K IVV D Sbjct: 438 SLLANASKRPANFIGIHFFSPVERMPLVEIICGEQTSDAALAKAFDFARQIGKTAIVVND 497 Query: 181 VPGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSV 240 GFF +R + GC L+++G+ + +D+ +++G P+G + D L++ V Sbjct: 498 SLGFFTSRTFGSYFDEGCKLLQEGVDPLL-IDNLG-KQIGMPVGPLTVLDEVSLELMRKV 555 Query: 241 WKAVTARGFKAFPCSSTEK-------LVSQGKLGVKSGSGYYQYPSPGK----------F 283 + G A ++ + + G G G+Y YP G+ F Sbjct: 556 NETQKEMGVFATVFDNSHSDAVGNILIKEYNRPGRHYGGGFYDYPEGGEKTIWPGLYELF 615 Query: 284 VRPTLPSTSKKLGRYLISPAVNEVSYLLREGIV-GKDDAEKGCVLGLGLPK---GILSYA 339 VRP + + + L+ V E L+EG++ D G +LG+G P G L + Sbjct: 616 VRPEVVLPVEDIKERLLFRQVIEAVKCLQEGVLRSVADGNVGSILGIGAPTWTGGFLQFV 675 Query: 340 DEIGIDVVVNTLEEMRQTSGMDHYSPDPLLLSMVKEGK 377 + G++ V E+ QT G + ++P LLL +G+ Sbjct: 676 NGYGVERFVQRARELAQTYG-ERFTPPVLLLEKAAKGE 712 Score = 92.8 bits (229), Expect = 5e-23 Identities = 60/172 (34%), Positives = 88/172 (51%), Gaps = 6/172 (3%) Query: 410 IVLNRPTRYNAINGDMIREINQALDSLEEREDVRVIAITGQGRVFSAGADVTEFGSLTPV 469 + ++ P NA+N + ++ LE+ + + I F AG D+ E P Sbjct: 16 VTMDMPGPVNAMNQLYRETMAATVNRLEQENGLTGVVIASAKSTFFAGGDLNELTDFKPG 75 Query: 470 KAMIASRKFHEV---FMKIQFLTKPVIAVINGLALGGGMELALSADFRVA--SKTAEMGQ 524 K +++ L PV+A ING ALGGG E+AL+ ++RV S A +G Sbjct: 76 DEADFQAKIELTKNDLRRLERLPVPVVAAINGAALGGGFEIALACNYRVLLNSPAAVVGL 135 Query: 525 PEINLGLIPGGGGTQRL-SRLSGRKGLELVLTGRRVKAEEAYRLGIVEFLAE 575 PE++LGL+PGGGG RL L + L L+L G+R+K EA LG+V L E Sbjct: 136 PEVSLGLLPGGGGIVRLVHHLGLERALPLLLEGKRMKPAEALALGLVNELIE 187 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1003 Number of extensions: 55 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 715 Length adjustment: 39 Effective length of query: 612 Effective length of database: 676 Effective search space: 413712 Effective search space used: 413712 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory