Align Inositol transport system ATP-binding protein (characterized)
to candidate Pf6N2E2_523 Inositol transport system ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_523 Length = 517 Score = 167 bits (422), Expect = 5e-46 Identities = 88/247 (35%), Positives = 146/247 (59%), Gaps = 5/247 (2%) Query: 7 LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF 66 L+ + + K F V+AL+ V + V PG L+G+NGAGKST +K ++G+++P G++ Sbjct: 26 LLEVVNVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRL 85 Query: 67 EGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANR 126 G+P+ F P A+ AGIA +HQ L ++P MS++ N ++G E ++ L + DH +R Sbjct: 86 RGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGRE---QLNGLHMVDHGEMHR 142 Query: 127 ITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTAN 186 T + ++ I L P++ VG LS ERQ V IA+AV + + +LI+DEPTSA+ + A+ Sbjct: 143 CTARLLERLRIKL-DPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITETEVAH 201 Query: 187 VLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 + + I ++ QG +++ITH + A+ D V G +G + + + L MM Sbjct: 202 LFSIIADLKSQGKGIIYITHKMNEVFAIADEVAVFRDGAYIGLQRADSMDGDSLISMMV- 260 Query: 247 GQELATL 253 G+EL+ L Sbjct: 261 GRELSQL 267 Score = 111 bits (278), Expect = 3e-29 Identities = 71/226 (31%), Positives = 115/226 (50%), Gaps = 7/226 (3%) Query: 25 GVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIAAGI 84 GVS D+ GE + G G+G++ + + GV T G+IL +GQP+ +DP AI G Sbjct: 293 GVSFDLHAGEILGIAGLMGSGRTNVAEAIFGVTPSTGGEILLDGQPVRISDPHMAIEKGF 352 Query: 85 ATVHQHL---AMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEM-RKMGINLR 140 A + + + P +SV N M P +G F A R E+M +K+ + Sbjct: 353 ALLTEDRKLSGLFPCLSVLENMEMAVLP-HYVG--NGFIQQKALRALCEDMCKKLRVKTP 409 Query: 141 GPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVA 200 +Q + TLSGG +Q +AR + ++LILDEPT + V A + I + +G+A Sbjct: 410 SLEQCIDTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMA 469 Query: 201 VVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 V+ I+ + L + DR V++ G +GT RG+ + E + + +G Sbjct: 470 VIMISSELPEVLGMSDRVMVMHEGDLMGTLNRGEATQERVMQLASG 515 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 308 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 517 Length adjustment: 30 Effective length of query: 231 Effective length of database: 487 Effective search space: 112497 Effective search space used: 112497 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory