Align Major myo-inositol transporter IolT (characterized)
to candidate Pf6N2E2_883 Major myo-inositol transporter IolT
Query= SwissProt::O34718 (473 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_883 Length = 472 Score = 471 bits (1211), Expect = e-137 Identities = 234/444 (52%), Positives = 315/444 (70%), Gaps = 2/444 (0%) Query: 10 FLRTIILVSTFGGLLFGYDTGVLNGALPYMGEPDQLNLNAFTEGLVTSSLLFGAALGAVF 69 +L+ I ++TFGGLLFG+DTGV+NGAL YM D L L FTEGLV S+LL GA +GA+F Sbjct: 27 YLQKITWIATFGGLLFGFDTGVINGALLYM--KDDLGLTPFTEGLVASALLIGAMMGALF 84 Query: 70 GGRMSDFNGRRKNILFLAVIFFISTIGCTFAPNVTVMIISRFVLGIAVGGASVTVPAYLA 129 GR+SD GRR+ ILFLAV+FF+ + C AP + VM+ +RF LG+AVGGASV VPAYL+ Sbjct: 85 SGRLSDLKGRRRIILFLAVVFFLGALACALAPTLDVMVAARFTLGLAVGGASVVVPAYLS 144 Query: 130 EMSPVESRGRMVTQNELMIVSGQLLAFVFNAILGTTMGDNSHVWRFMLVIASLPALFLFF 189 EM+P RGR++T+NELMIV+GQ LAF NA LG D VWR+ML +A+LPA+ L+ Sbjct: 145 EMAPSSIRGRIITRNELMIVTGQFLAFTTNATLGNLFSDLDGVWRWMLALATLPAVALWL 204 Query: 190 GMIRMPESPRWLVSKGRKEDALRVLKKIRDEKRAAAELQEIEFAFKKEDQLEKATFKDLS 249 GM+ MPESPRWL +KGR + L VLK +R+E A AE++ I E ++K ++DLS Sbjct: 205 GMLYMPESPRWLATKGRFREGLEVLKLVREEYYAKAEMEAITQQISNERFIKKGGWRDLS 264 Query: 250 VPWVRRIVFIGLGIAIVQQITGVNSIMYYGTEILRNSGFQTEAALIGNIANGVISVLATF 309 RRI IG+GIA+ Q+TGVNSIMY+GT+IL +G + +ALI N+ NG+IS+ ATF Sbjct: 265 QKGARRIFLIGIGIAVTSQLTGVNSIMYFGTQILTEAGLEQRSALIANVVNGIISIGATF 324 Query: 310 VGIWLLGRVGRRPMLMTGLIGTTTALLLIGIFSLVLEGSPALPYVVLSLTVTFLAFQQGA 369 VGI LL RVGRRPM++ G GTT +LLLIG+ S+ ++ S ++L FLA QG Sbjct: 325 VGIALLDRVGRRPMMLLGFTGTTLSLLLIGLVSVFVDPSVTRAMLILGAMAMFLASMQGL 384 Query: 370 ISPVTWLMLSEIFPLRLRGLGMGVTVFCLWMVNFAVSFTFPILLAAIGLSTTFFIFVGLG 429 I P W++L+EIFP+R+RG MG+ + W+ N + FP L+A IG+ TFF+FVG G Sbjct: 385 IGPAFWVLLAEIFPMRIRGGCMGMAIAAFWLTNVMIGMFFPSLVAMIGIGQTFFVFVGAG 444 Query: 430 ICSVLFVKRFLPETKGLSLEQLEE 453 + S+ FV ++PET+G +LE++E+ Sbjct: 445 LLSLTFVAVWVPETRGSTLEEIEQ 468 Lambda K H 0.327 0.142 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 706 Number of extensions: 23 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 472 Length adjustment: 33 Effective length of query: 440 Effective length of database: 439 Effective search space: 193160 Effective search space used: 193160 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory