Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate Pf6N2E2_1751 Aldehyde dehydrogenase A (EC 1.2.1.22) / Glycolaldehyde dehydrogenase (EC 1.2.1.21)
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1751 Length = 477 Score = 320 bits (820), Expect = 7e-92 Identities = 176/463 (38%), Positives = 269/463 (58%), Gaps = 4/463 (0%) Query: 12 QAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKALPAWRALTAKE 71 Q Y+ A+V +D + ++V+NPA G+++G VP+ AE +AI AA +A AW A A E Sbjct: 7 QNYIANAFVASD--EHLEVHNPANGQLLGRVPQGSTAEVEQAIAAARQAQRAWAARPAIE 64 Query: 72 RANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFGEEAKRIYGDTI 131 RA LR+ + E+ + LAR +T EQGK L A+ E+ + A +L++ E A+R+ G+ + Sbjct: 65 RAGYLRKIASKVREHGERLARTITAEQGKVLELARVEVNFTADYLDYMAEWARRLEGEVL 124 Query: 132 PGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLKPASQTPYSALA 191 + + I ++++P+GV A I PWNFP +I RK PAL G T+V+KP+ +TP + Sbjct: 125 SSDRAGESIFLLRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVIKPSEETPINCFE 184 Query: 192 LAELAERAGIPKGVFSVVTGSAGEVGGELTSNPIVRKLTFTGSTEIGRQLMAECAQDIKK 251 A L +P GVF+VV G+ VG L+ +P + ++FTGS G ++MA A +I K Sbjct: 185 FARLVAETDLPAGVFNVVCGTGATVGHALSGHPGIDLISFTGSVGTGSRIMAAAAPNITK 244 Query: 252 VSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQDGVYDAFVDKLKA 311 ++LELGG AP IV DADLD A+ S+ N GQ C CA R+YV+ V DAF+D + A Sbjct: 245 LNLELGGKAPAIVLADADLDLAIRAITASRVINTGQVCNCAERVYVERKVADAFIDGIAA 304 Query: 312 AVAKLNIGNGL-EAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGKPHALG-GTFFE 369 ++A G+ L E G+ GPLI+ A+ KV + + A +GA++++GG LG G ++ Sbjct: 305 SMAATRYGDPLAEHGLDMGPLINRAALDKVAQMVRTASGQGAQIITGGAVADLGQGFHYQ 364 Query: 370 PTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFYARDLARVFRV 429 PT+L + + E FGP+ P+ D E IA++ND+E+GL S Y L+ + Sbjct: 365 PTVLAGCSAKMEIMRKEIFGPVLPIQIVDDLDEAIALANDSEYGLTSSIYTASLSAAMQA 424 Query: 430 AEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDY 472 L++G IN G + SG+G K+G+ +Y Sbjct: 425 TRLLDFGETYINRENFEAMQGFHAGTRKSGIGGADGKHGLYEY 467 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 521 Number of extensions: 17 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 477 Length adjustment: 34 Effective length of query: 449 Effective length of database: 443 Effective search space: 198907 Effective search space used: 198907 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory