Align L-lactate permease (characterized, see rationale)
to candidate Pf6N2E2_3380 L-lactate permease
Query= uniprot:Q8EIL2 (545 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_3380 Length = 565 Score = 752 bits (1942), Expect = 0.0 Identities = 375/554 (67%), Positives = 450/554 (81%), Gaps = 21/554 (3%) Query: 2 TWTQTYTPLGSLWLTAIVALLPIVFFFLALTVLKLKGHIAGALTLLIALAVAIITYKMPV 61 TW Q Y+PLGSL L+A+ A++PIVFFFLAL V +LKGH+AG++TL +A+AVAI + MP Sbjct: 4 TWQQLYSPLGSLGLSALAAVIPIVFFFLALAVFRLKGHVAGSITLALAIAVAIFAFNMPA 63 Query: 62 SIALASAIYGFSYGLWPIAWIIITAVFLYKITVKTGQFEIIRSSVISVTEDQRLQMLLVG 121 +A A+A YGF+YGLWPIAWII+ AVFLYK+TVK+GQFE+IRSSV+S+T+DQRLQ+LL+G Sbjct: 64 DMAFAAAGYGFAYGLWPIAWIIVAAVFLYKLTVKSGQFEVIRSSVLSITDDQRLQVLLIG 123 Query: 122 FSFGAFLEGAAGFGAPVAITAALLVGLGFNPLYAAGLCLIANTAPVAFGAMGIPIIVAGQ 181 F FGAFLEGAAGFGAPVAITAALLVGLGFNPLYAAGLCLIANTAPVAFGA+GIPIIVAGQ Sbjct: 124 FCFGAFLEGAAGFGAPVAITAALLVGLGFNPLYAAGLCLIANTAPVAFGALGIPIIVAGQ 183 Query: 182 VSSLDPFHIGQLAGRQLPILSIIVPFWLIAMMDGIRGIRQTWPATLVAGVSFAVTQFLTS 241 V+ +D F IG + GRQLP+LS+ VPFWL+ MMDG+RG+R+TWPA LVAG+SFA+TQ+ TS Sbjct: 184 VTGIDAFKIGAMTGRQLPLLSLFVPFWLVFMMDGLRGVRETWPAALVAGLSFAITQYFTS 243 Query: 242 NFIGPELPDITSALVSLICLTLFLKVWQPKE---------------IFTFSGMKQRAVTP 286 NFIGPELPDITSAL SLI LTLFLKVWQPK + G Q T Sbjct: 244 NFIGPELPDITSALASLISLTLFLKVWQPKRTAGAQIAGATSSATVTASAGGFGQPRSTV 303 Query: 287 KSTFSNGQIFKAWSPFIILTAIVTLWSIKDVQLALSFA------TISIEVPYLHNLVIKT 340 S +S G+I KAWSPF+ILT +VT+W++K + + + +P+L +VIK Sbjct: 304 ASPYSLGEIIKAWSPFLILTVLVTIWTLKPFKAMFAAGGSMYGWVFNFAIPHLDQMVIKV 363 Query: 341 APIVAKETPYAAIYKLNLLGAVGTAILIAAMISIVVLKMSISNALTSFKDTLIELRFPIL 400 APIV T A++KL+ + A GTAI +A+IS++VLK++I LT+FK+TL ELR+PIL Sbjct: 364 APIVINPTAIPAVFKLDPISATGTAIFFSALISMLVLKINIKTGLTTFKETLFELRWPIL 423 Query: 401 SIGLVLAFAFVANYSGLSSTLALVLAGTGVAFPFFSPFLGWLGVFLTGSDTSSNALFGAL 460 SIG+VLAFAFV NYSG+SST+ALVLAGTG AFPFFSPFLGWLGVFLTGSDTSSNALF +L Sbjct: 424 SIGMVLAFAFVTNYSGMSSTMALVLAGTGAAFPFFSPFLGWLGVFLTGSDTSSNALFSSL 483 Query: 461 QANTANQIGVTPELLVAANTTGGVTGKMISPQSIAVACAATGLAGKESDLFRFTLKHSLF 520 QA TA+Q+GV LLVAANT+GGVTGKMISPQSIAVACAATGL GKESDLFRFTLKHSLF Sbjct: 484 QATTAHQLGVNDTLLVAANTSGGVTGKMISPQSIAVACAATGLVGKESDLFRFTLKHSLF 543 Query: 521 FCTFIGVLTVLQAY 534 F T +G++T+ QAY Sbjct: 544 FATIVGLITLAQAY 557 Lambda K H 0.327 0.140 0.419 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1116 Number of extensions: 40 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 545 Length of database: 565 Length adjustment: 36 Effective length of query: 509 Effective length of database: 529 Effective search space: 269261 Effective search space used: 269261 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory