Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate Pf6N2E2_1726 3-methylmercaptopropionyl-CoA ligase (DmdB)
Query= BRENDA::A4YDR9 (549 letters) >lcl|FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1726 3-methylmercaptopropionyl-CoA ligase (DmdB) Length = 540 Score = 416 bits (1070), Expect = e-121 Identities = 224/541 (41%), Positives = 315/541 (58%), Gaps = 17/541 (3%) Query: 10 EGVDPTGSWYSVLTPLLFLERAGKYFKDKTAVVYRDSRYTYSTFYDNVMVQASALMRRGF 69 +G PTG ++ LTPL F+ER + D AV++ R T++ Y ASAL RG Sbjct: 6 QGFAPTGVNHTALTPLSFIERTASVYPDYPAVIHGSIRRTWADTYRRCRRLASALAGRGI 65 Query: 70 SREDKLSFISRNRPEFLESFFGVPYAGGVLVPINFRLSPKEMAYIINHSDSKFVVVDEPY 129 + D ++ + N P LE+ FGVP G VL +N RL + +A+++ H ++K ++ D Sbjct: 66 GKNDTVAVMLPNIPAMLEAHFGVPMIGAVLNALNVRLDAEAIAFMLAHGEAKVLIADR-- 123 Query: 130 LNSLLEVKDQIKAEIILLEDP------DNPSASETARKEVRMTYRELVKGGSRDPLPIPA 183 E D ++A I +L+ P D+P E + + Y + G D Sbjct: 124 -----EFHDVVQAAIGMLDHPPLVIDLDDPEYGE-GQAVSELDYEAFLAEGDPDFAWQWP 177 Query: 184 KEEYSMITLYYTSGTTGLPKGVMHHHRGAFLNAMAEVLEHQMDLNSVYLWTLPMFHAASW 243 +E+ I+L YTSGTTG PKGV++HHRGA+LN++ + M + VYLWTLPMFH W Sbjct: 178 DDEWQAISLNYTSGTTGNPKGVVYHHRGAYLNSLGNQMTWAMGNHPVYLWTLPMFHCNGW 237 Query: 244 GFSWATVAVGATNVCLDKVDYPLIYRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNR 303 + W A+ +V L +VD I L+ + ++TH+C AP V L + + Sbjct: 238 CYPWTVTALAGVHVFLRRVDPQKILNLIREHQITHLCGAPIVLNALVNMPDSAKAAIDHP 297 Query: 304 VHMLVAGAAPAPATLKAMQEIGGYMCHVYGLTETYGPHSICEWRREWDSLPLEEQAKLKA 363 V +VAGAAP + A++E+G + HVYGLTE YGP ++C W WD LPLE++A++KA Sbjct: 298 VSAMVAGAAPPAKVIGAVEEMGIKVTHVYGLTEVYGPVTLCAWHAAWDELPLEQRAQIKA 357 Query: 364 RQGIPYVSFE--MDVFDANGKPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFRDGWF 421 RQG+ Y + E M +P P DG+TIGE+ MRG+ V GY KNP TAE+F GWF Sbjct: 358 RQGVRYPTLEGLMVADPRTLEPTPHDGQTIGEIFMRGNTVMKGYLKNPSATAEAFEGGWF 417 Query: 422 HSGDAAVVHPDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEKWG 481 H+GD AV H DGY+EI DR KD+I +GGE +S+I +E L P V AV PDEKWG Sbjct: 418 HTGDLAVTHADGYVEIRDRLKDIIISGGENISTIELEGVLYRHPAVLEAAVVARPDEKWG 477 Query: 482 EVVTARIELQ-EGVKLTEEEVIKFCKERLAHFECPKIVEFGPIPMTATGKMQKYVLRNEA 540 E A I L+ + + E E+I FC+E LA F+ P+ V F +P T+TGK+QK+VLR+ A Sbjct: 478 ETPCAFITLKSDHTDVREAEIISFCREHLAGFKVPRTVVFTQLPKTSTGKIQKFVLRDMA 537 Query: 541 K 541 K Sbjct: 538 K 538 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 783 Number of extensions: 42 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 540 Length adjustment: 35 Effective length of query: 514 Effective length of database: 505 Effective search space: 259570 Effective search space used: 259570 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory